Suppr超能文献

背后的真相:神经心理障碍问卷主成分分析的新方法。

The Truth behind the Zeros: A New Approach to Principal Component Analysis of the Neuropsychiatric Inventory.

机构信息

Norwegian Computing Center, Oslo, Norway.

Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA.

出版信息

Multivariate Behav Res. 2021 Jan-Feb;56(1):70-85. doi: 10.1080/00273171.2020.1736976. Epub 2020 Apr 24.

Abstract

Psychiatric syndromes in dementia are often derived from the Neuropsychiatric Inventory (NPI) using principal component analysis (PCA). The validity of this statistical approach can be questioned, since the excessive proportion of zeros and skewness of NPI items may distort the estimated relations between the items. We propose a novel version of PCA, ZIBP-PCA, where a zero-inflated bivariate Poisson (ZIBP) distribution models the pairwise covariance between the NPI items. We compared the performance of the method to classical PCA under zero-inflation using simulations, and in two dementia-cohorts (N = 830, N = 1349). Simulations showed that component loadings from PCA were biased due to zero-inflation, while the loadings of ZIBP-PCA remained unaffected. ZIBP-PCA obtained a simpler component structure of "psychosis," "mood" and "agitation" in both dementia-cohorts, compared to PCA. The principal components from ZIBP-PCA had component loadings as follows: First, the component interpreted as "psychosis" was loaded by the items delusions and hallucinations. Second, the "mood" component was loaded by depression and anxiety. Finally, the "agitation" component was loaded by irritability and aggression. In conclusion, PCA is not equipped to handle zero-inflation. Using the NPI, PCA fails to identify components with a valid interpretation, while ZIBP-PCA estimates simple and interpretable components to characterize the psychopathology of dementia.

摘要

痴呆症中的精神综合征通常使用主成分分析(PCA)从神经精神问卷(NPI)中得出。这种统计方法的有效性可能受到质疑,因为 NPI 项目的零过多和偏度可能会扭曲项目之间估计的关系。我们提出了一种新的 PCA 版本,ZIBP-PCA,其中零膨胀双变量泊松(ZIBP)分布对 NPI 项目之间的成对协方差进行建模。我们通过模拟以及在两个痴呆症队列(N=830,N=1349)中比较了该方法在零膨胀下的性能与经典 PCA。模拟结果表明,由于零膨胀,PCA 的成分负荷存在偏差,而 ZIBP-PCA 的负荷不受影响。与 PCA 相比,ZIBP-PCA 在两个痴呆症队列中获得了更简单的“精神病”,“情绪”和“激越”成分结构。ZIBP-PCA 的主要成分具有以下成分负荷:首先,将“精神病”解释为妄想和幻觉的项目加载到组件中。其次,“情绪”组件由抑郁和焦虑加载。最后,“激动”组件由烦躁和攻击加载。总之,PCA 无法处理零膨胀。使用 NPI,PCA 无法识别具有有效解释的组件,而 ZIBP-PCA 则估计简单且可解释的组件,以表征痴呆症的精神病理学。

相似文献

引用本文的文献

本文引用的文献

2
The stability of neuropsychiatric subsyndromes in Alzheimer's disease.阿尔茨海默病神经精神亚综合征的稳定性。
Alzheimers Dement. 2018 Jul;14(7):880-888. doi: 10.1016/j.jalz.2018.02.006. Epub 2018 Mar 13.
4
Neuropsychiatric signs and symptoms of Alzheimer's disease: New treatment paradigms.阿尔茨海默病的神经精神症状:新的治疗模式。
Alzheimers Dement (N Y). 2017 Aug 5;3(3):440-449. doi: 10.1016/j.trci.2017.07.001. eCollection 2017 Sep.
7
Psychiatric classifications: validity and utility.精神疾病分类:效度与效用。
World Psychiatry. 2016 Feb;15(1):26-31. doi: 10.1002/wps.20284.
8
The Scree Test For The Number Of Factors.因子数量的碎石检验
Multivariate Behav Res. 1966 Apr 1;1(2):245-76. doi: 10.1207/s15327906mbr0102_10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验