Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA.
Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA.
Metallomics. 2020 Jun 24;12(6):876-890. doi: 10.1039/d0mt00008f.
Like platinum-based chemotherapeutics, the anticancer ruthenium complex indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)], or KP1019, damages DNA, induces apoptosis, and causes tumor regression in animal models. Unlike platinum-based drugs, KP1019 showed no dose-limiting toxicity in a phase I clinical trial. Despite these advances, the mechanism(s) and target(s) of KP1019 remain unclear. For example, the drug may damage DNA directly or by causing oxidative stress. Likewise, KP1019 binds cytosolic proteins, suggesting DNA is not the sole target. Here we use the budding yeast Saccharomyces cerevisiae as a model in a proteomic study of the cellular response to KP1019. Mapping protein level changes onto metabolic pathways revealed patterns consistent with elevated synthesis and/or cycling of the antioxidant glutathione, suggesting KP1019 induces oxidative stress. This result was supported by increased fluorescence of the redox-sensitive dye DCFH-DA and increased KP1019 sensitivity of yeast lacking Yap1, a master regulator of the oxidative stress response. In addition to oxidative and DNA stress, bioinformatic analysis revealed drug-dependent increases in proteins involved ribosome biogenesis, translation, and protein (re)folding. Consistent with proteotoxic effects, KP1019 increased expression of a heat-shock element (HSE) lacZ reporter. KP1019 pre-treatment also sensitized yeast to oxaliplatin, paralleling prior research showing that cancer cell lines with elevated levels of translation machinery are hypersensitive to oxaliplatin. Combined, these data suggest that one of KP1019's many targets may be protein metabolism, which opens up intriguing possibilities for combination therapy.
与铂类化疗药物一样,抗癌钌配合物吲唑[四氯(1H-吲唑)合钌(III)],或 KP1019,可破坏 DNA、诱导细胞凋亡,并在动物模型中引起肿瘤消退。与铂类药物不同,KP1019 在 I 期临床试验中没有表现出剂量限制毒性。尽管取得了这些进展,但 KP1019 的作用机制和靶标仍不清楚。例如,该药物可能直接或通过引起氧化应激来破坏 DNA。同样,KP1019 与细胞质蛋白结合,表明 DNA 不是唯一的靶标。在这里,我们使用 budding 酵母 Saccharomyces cerevisiae 作为模型,在细胞对 KP1019 反应的蛋白质组学研究中。将蛋白质水平变化映射到代谢途径上,揭示了与抗氧化谷胱甘肽的合成和/或循环升高一致的模式,表明 KP1019 诱导氧化应激。这一结果得到了增加的氧化还原敏感染料 DCFH-DA 荧光和 Yap1 缺失酵母对 KP1019 敏感性增加的支持,Yap1 是氧化应激反应的主要调节因子。除了氧化和 DNA 应激外,生物信息学分析还揭示了药物依赖性增加与核糖体生物发生、翻译和蛋白质(再)折叠相关的蛋白质。与蛋白毒性效应一致,KP1019 增加了热休克元件 (HSE) lacZ 报告基因的表达。KP1019 预处理还使酵母对奥沙利铂敏感,与先前的研究一致,该研究表明翻译机制水平升高的癌细胞系对奥沙利铂更敏感。综合这些数据表明,KP1019 的许多靶标之一可能是蛋白质代谢,这为联合治疗开辟了有趣的可能性。