Suppr超能文献

使用 Ga-PSMA-11 PET 半自动量化肿瘤体积作为晚期前列腺癌患者生存的生物标志物。

Semiautomatically Quantified Tumor Volume Using Ga-PSMA-11 PET as a Biomarker for Survival in Patients with Advanced Prostate Cancer.

机构信息

Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.

Department of Nuclear Medicine, University Hospital Essen, Essen, Germany.

出版信息

J Nucl Med. 2020 Dec;61(12):1786-1792. doi: 10.2967/jnumed.120.242057. Epub 2020 Apr 24.

Abstract

Prostate-specific membrane antigen (PSMA)-targeting PET imaging is becoming the reference standard for prostate cancer staging, especially in advanced disease. Yet, the implications of PSMA PET-derived whole-body tumor volume for overall survival are poorly elucidated to date. This might be because semiautomated quantification of whole-body tumor volume as a PSMA PET biomarker is an unmet clinical challenge. Therefore, in the present study we propose and evaluate a software that enables the semiautomated quantification of PSMA PET biomarkers such as whole-body tumor volume. The proposed quantification is implemented as a research prototype. PSMA-accumulating foci were automatically segmented by a percental threshold (50% of local SUV). Neural networks were trained to segment organs in PET/CT acquisitions (training CTs: 8,632, validation CTs: 53). Thereby, PSMA foci within organs of physiologic PSMA uptake were semiautomatically excluded from the analysis. Pretherapeutic PSMA PET/CTs of 40 consecutive patients treated with Lu-PSMA-617 were evaluated in this analysis. The whole-body tumor volume (PSMA), SUV, SUV, and other whole-body imaging biomarkers were calculated for each patient. Semiautomatically derived results were compared with manual readings in a subcohort (by 1 nuclear medicine physician). Additionally, an interobserver evaluation of the semiautomated approach was performed in a subcohort (by 2 nuclear medicine physicians). Manually and semiautomatically derived PSMA metrics were highly correlated (PSMA: = 1.000, < 0.001; SUV: = 0.988, < 0.001). The interobserver agreement of the semiautomated workflow was also high (PSMA: = 1.000, < 0.001, interclass correlation coefficient = 1.000; SUV: = 0.988, < 0.001, interclass correlation coefficient = 0.997). PSMA (ml) was a significant predictor of overall survival (hazard ratio: 1.004; 95% confidence interval: 1.001-1.006, = 0.002) and remained so in a multivariate regression including other biomarkers (hazard ratio: 1.004; 95% confidence interval: 1.001-1.006 = 0.004). PSMA is a promising PSMA PET biomarker that is reproducible and easily quantified by the proposed semiautomated software. Moreover, PSMA is a significant predictor of overall survival in patients with advanced prostate cancer who receive Lu-PSMA-617 therapy.

摘要

前列腺特异性膜抗原 (PSMA)-靶向 PET 成像正在成为前列腺癌分期的参考标准,尤其是在晚期疾病中。然而,到目前为止,PSMA PET 衍生的全身肿瘤体积对总生存期的影响还没有得到很好的阐明。这可能是因为 PSMA PET 生物标志物(如全身肿瘤体积)的半自动定量是一个未满足的临床挑战。因此,在本研究中,我们提出并评估了一种软件,该软件能够实现 PSMA PET 生物标志物(如全身肿瘤体积)的半自动定量。所提出的定量方法被实现为一个研究原型。通过百分比阈值(50%的局部 SUV)自动分割 PSMA 累积焦点。神经网络被训练来分割 PET/CT 采集中的器官(训练 CT:8632,验证 CT:53)。因此,从分析中半自动排除了生理性 PSMA 摄取的器官内的 PSMA 焦点。在这项分析中,对 40 名连续接受 Lu-PSMA-617 治疗的患者进行了治疗前 PSMA PET/CT 评估。为每位患者计算了全身肿瘤体积 (PSMA)、SUV、SUVmax 和其他全身成像生物标志物。在一个亚组中,将半自动得出的结果与手动读数进行了比较(由 1 名核医学医师进行)。此外,在一个亚组中还对半自动方法进行了观察者间评估(由 2 名核医学医师进行)。手动和半自动得出的 PSMA 指标高度相关(PSMA:= 1.000,<0.001;SUV:= 0.988,<0.001)。半自动工作流程的观察者间一致性也很高(PSMA:= 1.000,<0.001,组内相关系数 = 1.000;SUV:= 0.988,<0.001,组内相关系数 = 0.997)。PSMA(ml)是总生存期的显著预测因子(风险比:1.004;95%置信区间:1.001-1.006,=0.002),在包括其他生物标志物的多变量回归中仍然如此(风险比:1.004;95%置信区间:1.001-1.006,=0.004)。PSMA 是一种很有前途的 PSMA PET 生物标志物,可通过我们提出的半自动软件进行可重复和容易的定量。此外,PSMA 是接受 Lu-PSMA-617 治疗的晚期前列腺癌患者总生存期的显著预测因子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验