Suppr超能文献

大鼠牙种植体的机械适应性应变与功能性骨整合

Mechanoadaptive strain and functional osseointegration of dental implants in rats.

作者信息

Wang B, Kim K, Srirangapatanam S, Ustriyana P, Wheelis S E, Fakra S, Kang M, Rodrigues D C, Ho S P

机构信息

Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, United States of America.

Department of Urology, School of Medicine, UCSF, San Francisco, CA 94143, United States of America.

出版信息

Bone. 2020 Aug;137:115375. doi: 10.1016/j.bone.2020.115375. Epub 2020 Apr 23.

Abstract

Spatiotemporal implant-bone biomechanics and mechanoadaptive strains in peri-implant tissue are poorly understood. Physical and chemical characteristics of an implant-bone complex (IBC) were correlated in three-dimensional space (along the length and around a dental implant) to gather insights into time related integration of the implant with the cortical portion of a jaw bone in a rat. Rats (N = 9) were divided into three experimental groups with three rats per time point; 3-, 11-, and 24-day. All rats were fed crumbled hard pellets mixed with water (soft-food diet) for the first 3 days followed by a hard-food diet with intact hard-food pellets (groups of 11- and 24-day only). Biomechanics of the IBCs harvested from rats at each time point was evaluated by performing mechanical testing in situ in tandem with X-ray imaging. The effect of physical association (contact area) of a loaded implant with adapting peri-implant tissue, and resulting strain within was mapped by using digital volume correlation (DVC) technique. The IBC stiffness at respective time points was correlated with mechanical strain in peri-implant tissue. Results illustrated that IBC stiffness at 11-day was lower than that observed at 3-day. However, at 24-day, IBC stiffness recovered to that which was observed at 3-day. Correlative microscopy and spectroscopy illustrated that the lower IBC stiffness was constituted by softer and less mineralized peri-implant tissue that contained varying expressions of osteoconductive elements. Lower IBC stiffness observed at 11-day was constituted by less mineralized peri-implant tissue with osteoconductive elements that included phosphorus (P) which was co-localized with higher expression of zinc (Zn), and lower expression of calcium (Ca). Higher IBC stiffness at 24-day was constituted by mineralized peri-implant tissue with higher expressions of osteoconductive elements including Ca and P, and lower expressions of Zn. These spatiotemporal correlative maps of peri-implant tissue architecture, heterogeneous distribution of mineral density, and elemental colocalization underscore mechanoadaptive physicochemical properties of peri-implant tissue that facilitate functional osseointegration of an implant. These results provided insights into 1) plausible "prescription" of mechanical loads as an osteoinductive "therapeutic dose" to encourage osteoconductive elements in the peri-implant tissue that would facilitate functional osseointegration of the implant; 2) a "critical temporal window" between 3 and 11 days, and perhaps it is this acute phase during which key candidate regenerative molecules can be harnessed to accelerate osseointegration of an implant under load.

摘要

种植体 - 骨生物力学以及种植体周围组织中的机械适应性应变在时空方面的情况目前了解甚少。在三维空间(沿牙种植体的长度以及围绕牙种植体)中,将种植体 - 骨复合体(IBC)的物理和化学特性进行关联,以深入了解大鼠下颌骨皮质部分的种植体与时间相关的整合情况。将大鼠(N = 9)分为三个实验组,每个时间点有三只大鼠;分别为3天、11天和24天。所有大鼠在最初3天喂食与水混合的碎硬颗粒饲料(软食饮食),之后仅11天和24天组喂食完整硬颗粒饲料的硬食饮食。在每个时间点从大鼠身上采集的IBC进行生物力学评估,通过原位机械测试与X射线成像同步进行。使用数字体积相关(DVC)技术绘制加载种植体与适应的种植体周围组织的物理关联(接触面积)以及由此产生的应变情况。各个时间点的IBC刚度与种植体周围组织中的机械应变相关。结果表明,11天时IBC刚度低于3天时观察到的刚度。然而,在24天时,IBC刚度恢复到3天时观察到的水平。相关显微镜和光谱分析表明,较低的IBC刚度是由较软且矿化程度较低的种植体周围组织构成,该组织含有不同表达的骨传导元素。11天时观察到的较低IBC刚度是由矿化程度较低的种植体周围组织构成,其骨传导元素包括磷(P),磷与较高的锌(Zn)表达共定位,而钙(Ca)表达较低。24天时较高的IBC刚度是由矿化的种植体周围组织构成,其骨传导元素包括Ca和P的表达较高,而Zn的表达较低。这些种植体周围组织结构、矿物质密度的异质分布以及元素共定位的时空相关图谱强调了种植体周围组织的机械适应性物理化学特性,这些特性有助于种植体的功能性骨整合。这些结果为以下方面提供了见解:1)作为骨诱导“治疗剂量”的机械负荷的合理“处方”,以促进种植体周围组织中的骨传导元素,从而有助于种植体的功能性骨整合;2)3至11天之间的“关键时间窗口”,也许正是在这个急性期,可以利用关键的候选再生分子来加速负载下种植体的骨整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96bb/7822628/8bd59e20cd74/nihms-1604844-f0005.jpg

相似文献

引用本文的文献

本文引用的文献

5
Metal TiO Nanotube Layers for the Treatment of Dental Implant Infections.金属 TiO 纳米管层治疗牙科种植体感染。
ACS Appl Mater Interfaces. 2018 May 23;10(20):17089-17099. doi: 10.1021/acsami.8b04045. Epub 2018 May 10.
9
Current trends to measure implant stability.测量种植体稳定性的当前趋势。
J Indian Prosthodont Soc. 2016 Apr-Jun;16(2):124-30. doi: 10.4103/0972-4052.176539.
10
Mechanoresponsive Properties of the Periodontal Ligament.牙周韧带的力学响应特性
J Dent Res. 2016 Apr;95(4):467-75. doi: 10.1177/0022034515626102. Epub 2016 Jan 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验