Suppr超能文献

基于多元素指纹图谱结合多元数据分析的花生仁溯源研究。

Origin traceability of peanut kernels based on multi-element fingerprinting combined with multivariate data analysis.

机构信息

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P. R. China.

出版信息

J Sci Food Agric. 2020 Aug;100(10):4040-4048. doi: 10.1002/jsfa.10449. Epub 2020 May 13.

Abstract

BACKGROUND

Multi-elements have been widely used to identify the geographical origins of various agricultural products. The objective of this study was to investigate the feasibility of identifying the geographical origins of peanut kernels at different regional scales by using the multi-element fingerprinting technique. The concentrations of 20 elements [boron (B), magnesium (Mg), phosphorus (P), potassium (K), calcium (Ca), etc.] were determined in 135 peanut samples from Jilin Province, Jiangsu Province, and Shandong Province of China. Data obtained were processed by one-way analysis of variance (ANOVA), principal components analysis (PCA), k nearest neighbors (k-NN), linear discriminant analysis (LDA), and support vector machine (SVM).

RESULTS

Peanut kernels from different regions had their own element fingerprints. The k-NN, LDA, and SVM were all suitable to predict peanut kernels according to their grown provinces with the total correct classification rates of 91.2%, 91.1%, and 91.1%, respectively. While SVM was the best to identify different grown cities of peanut kernels with the prediction accuracy of 91.3%, compared to 72.2% and 78.3% for k-NN and LDA, respectively.

CONCLUSION

It was an effective method to identify producing areas of peanut kernels at different regional scales using multi-element fingerprinting combined with SVM to enhance regional capabilities for quality assurance and control. © 2020 Society of Chemical Industry.

摘要

背景

多元素已被广泛用于鉴定各种农产品的地理起源。本研究的目的是探讨利用多元素指纹图谱技术识别不同区域尺度花生仁地理起源的可行性。测定了来自中国吉林省、江苏省和山东省的 135 个花生样品中的 20 种元素(硼(B)、镁(Mg)、磷(P)、钾(K)、钙(Ca)等)的浓度。通过单因素方差分析(ANOVA)、主成分分析(PCA)、k 最近邻(k-NN)、线性判别分析(LDA)和支持向量机(SVM)对获得的数据进行处理。

结果

不同地区的花生仁具有各自的元素指纹图谱。k-NN、LDA 和 SVM 均适合根据产地对花生仁进行预测,总正确分类率分别为 91.2%、91.1%和 91.1%。而 SVM 是识别花生仁不同产地的最佳方法,预测准确率为 91.3%,而 k-NN 和 LDA 的预测准确率分别为 72.2%和 78.3%。

结论

利用多元素指纹图谱结合 SVM 识别不同区域尺度花生仁的产地是一种有效的方法,可以提高区域质量保证和控制能力。 © 2020 化学工业协会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验