Suppr超能文献

利用矿物元素指纹图谱鉴定玉米(Zea mays L.)的地理起源。

Determination of the geographical origin of maize (Zea mays L.) using mineral element fingerprints.

机构信息

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, PR China.

出版信息

J Sci Food Agric. 2020 Feb;100(3):1294-1300. doi: 10.1002/jsfa.10144. Epub 2019 Dec 5.

Abstract

BACKGROUND

Maize (Zea mays L.) is a staple cereal crop and feed crop throughout the world. In this article, a mineral element fingerprinting technique was applied to single out suitable element indicators to determine the geographical origin of maize. A total of 90 fresh maize samples were collected in 2107 from Jilin, Gansu, and Shandong provinces in China. The contents of 25 mineral elements in all maize samples were measured by inductively coupled plasma mass spectrometry (ICP-MS). The composition of mineral elements was analyzed by multivariate statistical analysis, including one-way analysis of variance (one-way ANOVA), principal component analysis (PCA), k-nearest neighbor (KNN) analysis, and stepwise linear discriminant analysis (SLDA).

RESULTS

As compared by one-way ANOVA, the contents of 19 mineral elements in maize samples were significantly different among three provinces. Principal component analysis based on these 19 elements could obtain preliminary visual classification groups of maize samples. K-nearest neighbor analysis produced a total correct classification rate of 83.9% on the training set, and 82.2% on the prediction set. The SLDA model, based on eight indicative elements (Na, Cr, Rb, Sr, Mo, Cs, Ba, and Pb) obtained a total correct classification rate of 92.2% with cross-validation.

CONCLUSION

The mineral element fingerprinting technique combined with multivariate statistical analysis could be a helpful method to identify the geographical origin of maize. © 2019 Society of Chemical Industry.

摘要

背景

玉米(Zea mays L.)是全球范围内的主要粮食作物和饲料作物。本文应用矿物质元素指纹图谱技术,筛选出合适的元素指标,以确定玉米的地理来源。2017 年共采集了来自中国吉林、甘肃和山东三省的 90 个新鲜玉米样本。采用电感耦合等离子体质谱法(ICP-MS)测定了所有玉米样本中 25 种矿物质元素的含量。采用多元统计分析方法对矿物质元素组成进行分析,包括单因素方差分析(one-way ANOVA)、主成分分析(PCA)、k-最近邻(KNN)分析和逐步线性判别分析(SLDA)。

结果

单因素方差分析表明,三省玉米样本中 19 种矿物质元素的含量存在显著差异。基于这 19 种元素的主成分分析可以初步观察到玉米样本的分类群体。KNN 分析在训练集上的总正确分类率为 83.9%,在预测集上的总正确分类率为 82.2%。基于 8 种指示元素(Na、Cr、Rb、Sr、Mo、Cs、Ba 和 Pb)的 SLDA 模型,交叉验证的总正确分类率为 92.2%。

结论

矿物质元素指纹图谱技术结合多元统计分析可以作为一种有用的方法来识别玉米的地理来源。 © 2019 化学工业协会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验