Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
ACS Appl Mater Interfaces. 2020 May 20;12(20):23002-23009. doi: 10.1021/acsami.0c05344. Epub 2020 May 7.
Multifunctional metal-organic frameworks (MOFs) that possess permanent porosity are promising catalysts in organic transformation. Herein, we report the construction of a hierarchical MOF functionalized with basic aliphatic amine groups and polyvinylpyrrolidone-capped platinum nanoparticles (Pt NPs). The postsynthetic covalent modification of organic ligands increases basic site density in the MOF and simultaneously introduces mesopores to create a hierarchically porous structure. The multifunctional MOF is capable of catalyzing a sequential Knoevenagel condensation-hydrogenation-intramolecular cyclization reaction. The unique selective reduction of the nitro group to intermediate hydroxylamine by Pt NPs supported on MOF followed by intramolecular cyclization with a cyano group affords an excellent yield (up to 92%) to the uncommon quinoline -oxides over quinolines. The hierarchical MOF and polyvinylpyrrolidone capping agent on Pt NPs synergistically facilitate the enrichment of substrates and thus lead to high activity in the reduction-intramolecular cyclization reaction. The bioactivity assay indicates that the synthesized quinoline -oxides evidently inhibit the proliferation of lung cancer cells. Our findings demonstrate the feasibility of MOF-catalyzed direct synthesis of bioactive molecules from readily available compounds under mild conditions.
多功能金属有机骨架(MOFs)具有永久孔隙率,是有机转化中很有前途的催化剂。本文报道了一种具有碱性脂肪族胺基和聚乙烯吡咯烷酮封端的铂纳米粒子(Pt NPs)的分级 MOF 的构建。有机配体的后合成共价修饰增加了 MOF 中的碱性位密度,并同时引入介孔以形成分级多孔结构。多功能 MOF 能够催化顺序 Knoevenagel 缩合-加氢-分子内环化反应。Pt NPs 负载在 MOF 上可将硝基选择性还原为中间羟胺,然后与氰基进行分子内环化,得到罕见的喹啉-氧化物,产率高达 92%,而不是普通的喹啉。分级 MOF 和 Pt NPs 上的聚乙烯吡咯烷酮封端剂协同作用促进了底物的富集,从而导致还原-分子内环化反应具有高活性。生物活性测定表明,合成的喹啉-氧化物能明显抑制肺癌细胞的增殖。我们的研究结果表明,在温和条件下,从易得的化合物中通过 MOF 催化直接合成生物活性分子是可行的。