Suppr超能文献

一种惩罚结构方程建模方法,考虑到次级表型,用于对 PrediXcan 中与阿尔茨海默病相关的遗传调控表达进行变量选择。

A penalized structural equation modeling method accounting for secondary phenotypes for variable selection on genetically regulated expression from PrediXcan for Alzheimer's disease.

机构信息

Département de mathématiques et de statistique, Université Laval, Québec, Canada.

Cervo Brain Research Centre, Québec, Canada.

出版信息

Biometrics. 2021 Mar;77(1):362-371. doi: 10.1111/biom.13286. Epub 2020 May 6.

Abstract

As the global burden of mental illness is estimated to become a severe issue in the near future, it demands the development of more effective treatments. Most psychiatric diseases are moderately to highly heritable and believed to involve many genes. Development of new treatment options demands more knowledge on the molecular basis of psychiatric diseases. Toward this end, we propose to develop new statistical methods with improved sensitivity and accuracy to identify disease-related genes specialized for psychiatric diseases. The qualitative psychiatric diagnoses such as case control often suffer from high rates of misdiagnosis and oversimplify the disease phenotypes. Our proposed method utilizes endophenotypes, the quantitative traits hypothesized to underlie disease syndromes, to better characterize the heterogeneous phenotypes of psychiatric diseases. We employ the structural equation modeling using the liability-index model to link multiple genetically regulated expressions from PrediXcan and the manifest variables including endophenotypes and case-control status. The proposed method can be considered as a general method for multivariate regression, which is particularly helpful for psychiatric diseases. We derive penalized retrospective likelihood estimators to deal with the typical small sample size issue. Simulation results demonstrate the advantages of the proposed method and the real data analysis of Alzheimer's disease illustrates the practical utility of the techniques. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative database.

摘要

随着全球精神疾病负担预计在不久的将来成为一个严重的问题,因此需要开发更有效的治疗方法。大多数精神疾病具有中度到高度遗传性,并且被认为涉及许多基因。开发新的治疗选择需要更多关于精神疾病分子基础的知识。为此,我们建议开发新的统计方法,以提高识别专门针对精神疾病的疾病相关基因的敏感性和准确性。定性的精神疾病诊断,如病例对照,往往存在高误诊率,并简化了疾病表型。我们提出的方法利用内表型,即假设潜在疾病综合征的定量特征,来更好地描述精神疾病的异质表型。我们采用结构方程模型,使用易感性指数模型将来自 PrediXcan 的多个遗传调控表达与包括内表型和病例对照状态在内的显变量联系起来。所提出的方法可以被认为是一种用于多变量回归的通用方法,这对于精神疾病尤其有帮助。我们推导出惩罚后验似然估计量来处理典型的小样本量问题。模拟结果表明了所提出方法的优势,并且对阿尔茨海默病的真实数据分析说明了该技术的实际效用。本文准备数据来自阿尔茨海默病神经影像学倡议数据库。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验