Kalli S, Grönlund J, Ihalainen H, Siimes A, Välimäki I, Antila K
Medical Engineering Laboratory, Technical Research Centre of Finland, Tampere.
Comput Biomed Res. 1988 Dec;21(6):512-30. doi: 10.1016/0010-4809(88)90009-2.
The neonatal cardiovascular control system is a complicated interactive system which is under vigorous development at birth. From the measurement point of view the cardiovascular control is a closed-loop system. However, it can be examined on a beat-by-beat basis by analyzing circulatory-controlled variables with advanced signal analysis techniques. This paper proposes to use a multivariate autoregressive modeling technique in the analysis of several simultaneous physiological signals in order to examine interactions and inherent properties in the system. With the proposed multivariate autoregressive modeling technique, a signal is modeled as a linear combination of its own past and the past values of the other simultaneous signals plus a predictive error term of the model. The interactions in the system after the model identification are analyzed in frequency domain utilizing power spectrum estimates of the signals and signal contributions. The applicability of the proposed method was examined by a three-variable model between heart rate, blood pressure and respiration in the study of autonomic cardiovascular control in a chronic neonatal lamb model, in which the cardiovascular status was changed by using a beta-adrenergic autonomic nervous blockade. The study showed that the multivariate autoregressive modeling technique is a feasible technique in studying complicated interactions within the cardiovascular control system.
新生儿心血管控制系统是一个复杂的交互系统,在出生时正处于快速发育阶段。从测量角度来看,心血管控制是一个闭环系统。然而,通过先进的信号分析技术分析循环控制变量,可以逐搏对其进行检测。本文提出在分析多个同步生理信号时使用多元自回归建模技术,以研究系统中的相互作用和固有特性。利用所提出的多元自回归建模技术,一个信号被建模为其自身过去值、其他同步信号的过去值的线性组合,再加上模型的预测误差项。在模型识别后,利用信号的功率谱估计和信号贡献在频域中分析系统中的相互作用。在慢性新生羔羊模型的自主心血管控制研究中,通过心率、血压和呼吸之间的三变量模型检验了所提出方法的适用性,在该模型中,通过使用β-肾上腺素能自主神经阻滞来改变心血管状态。研究表明,多元自回归建模技术是研究心血管控制系统内复杂相互作用的一种可行技术。