Suppr超能文献

为了未来从水中生产氢气,对集胞藻 PCC 6803 的光合电子传递进行改造。

Remodeling of photosynthetic electron transport in Synechocystis sp. PCC 6803 for future hydrogen production from water.

机构信息

Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany.

Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany.

出版信息

Biochim Biophys Acta Bioenerg. 2020 Aug 1;1861(8):148208. doi: 10.1016/j.bbabio.2020.148208. Epub 2020 Apr 24.

Abstract

Photosynthetic microorganisms such as the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) can be exploited for the light-driven synthesis of valuable compounds. Thermodynamically, it is most beneficial to branch-off photosynthetic electrons at ferredoxin (Fd), which provides electrons for a variety of fundamental metabolic pathways in the cell, with the ferredoxin-NADP Oxido-Reductase (FNR, PetH) being the main target. In order to re-direct electrons from Fd to another consumer, the high electron transport rate between Fd and FNR has to be reduced. Based on our previous in vitro experiments, corresponding FNR-mutants at position FNR_K190 (Wiegand, K., et al.: "Rational redesign of the ferredoxin-NADP-oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H-production". Biochim Biophys Acta, 2018) have been generated in Synechocystis cells to study their impact on the cellular metabolism and their potential for a future hydrogen-producing design cell. Out of two promising candidates, mutation FNR_K190D proved to be lethal due to oxidative stress, while FNR_K190A was successfully generated and characterized: The light induced NADPH formation is clearly impaired in this mutant and it shows also major metabolic adaptations like a higher glucose metabolism as evidenced by quantitative mass spectrometric analysis. These results indicate a high potential for the future use of photosynthetic electrons in engineered design cells - for instance for hydrogen production. They also show substantial differences of interacting proteins in an in vitro environment vs. physiological conditions in whole cells.

摘要

光合微生物,如蓝藻集胞藻 PCC 6803(集胞藻),可用于光驱动合成有价值的化合物。从热力学角度来看,在铁氧还蛋白(Fd)处分支光合电子是最有利的,Fd 为细胞内的各种基本代谢途径提供电子,而铁氧还蛋白-NADP 氧化还原酶(FNR,PetH)是主要的靶标。为了将电子从 Fd 重新引导到另一个消费者,必须降低 Fd 和 FNR 之间的高电子传递速率。基于我们之前的体外实验,在集胞藻细胞中生成了相应的 FNR 突变体 FNR_K190(Wiegand,K.,等:“理性设计铁氧还蛋白-NADP-氧化还原酶/铁氧还蛋白相互作用以进行光合作用依赖的 H 生产”。生物化学与生物物理学报,2018 年),以研究它们对细胞代谢的影响及其在未来产氢设计细胞中的潜力。在两个有前途的候选者中,突变体 FNR_K190D 由于氧化应激而被证明是致命的,而 FNR_K190A 则成功生成并进行了表征:在这个突变体中,光诱导的 NADPH 形成明显受损,并且它还显示出主要的代谢适应,如定量质谱分析表明的更高的葡萄糖代谢。这些结果表明,在工程设计细胞中,未来可以有效地利用光合电子,例如用于生产氢气。它们还表明,在体外环境中与相互作用蛋白的实质性差异与整个细胞中的生理条件相比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验