National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
Biomacromolecules. 2020 Jun 8;21(6):2400-2408. doi: 10.1021/acs.biomac.0c00345. Epub 2020 May 11.
While injectable cross-linking collagen hydrogels offer great potential for applying stem cell therapy to regenerate articular cartilage minimally invasive procedures, the encapsulated cells experience high shear stress during injection, which results in limited cell survival. In this study, surface-modified cellulose nanocrystals (CNCs) have been investigated as green and biocompatible reinforcing agents for collagen hydrogel. Aldehyde-functionalized CNCs (a-CNCs) were produced through a facile one-pot oxidation. A nanocomposite a-CNC/collagen hydrogel cross-linked rapidly by dynamic Schiff base bonds based on a-CNCs and collagen under physiological conditions. The a-CNC/collagen hydrogel exhibited fast shear-thinning, self-healing characteristics, and improved elastic modulus compared with CNC/collagen hydrogel without Schiff base bonds. The a-CNC/collagen hydrogel was then investigated for mesenchymal stem cell (MSC) delivery. MSCs encapsulated in the a-CNC/collagen hydrogel showed high cell viability after extrusion . Subcutaneous injection of MSCs encapsulated in the a-CNC/collagen hydrogel showed improved implant integrity and higher cell retention. The proposed self-healing collagen-based hydrogel would not only protect cells during injection but also fit into the irregular cartilage defect, thus holding promise in delivering MSCs for cartilage regeneration through minimally invasive procedures.
尽管可注射交联胶原水凝胶为通过微创程序将干细胞疗法应用于再生关节软骨提供了巨大的潜力,但包封的细胞在注射过程中会经历高剪切应力,导致细胞存活率有限。在这项研究中,对表面修饰的纤维素纳米晶体 (CNC) 进行了研究,将其作为胶原水凝胶的绿色和生物相容的增强剂。醛基功能化的 CNC(a-CNC) 通过简便的一锅氧化法制备。在生理条件下,基于 a-CNC 和胶原的动态席夫碱键可快速交联纳米复合 a-CNC/胶原水凝胶。与没有席夫碱键的 CNC/胶原水凝胶相比,a-CNC/胶原水凝胶表现出更快的剪切变稀、自修复特性和更高的弹性模量。然后研究了 a-CNC/胶原水凝胶在间充质干细胞 (MSC) 递送中的应用。挤出后,包封在 a-CNC/胶原水凝胶中的 MSC 表现出高细胞活力。包封在 a-CNC/胶原水凝胶中的 MSC 的皮下注射显示出改善的植入物完整性和更高的细胞保留率。所提出的自修复胶原基水凝胶不仅可以在注射过程中保护细胞,还可以适应不规则的软骨缺陷,因此有望通过微创程序递送 MSC 用于软骨再生。