Su Chien-Lin, Steele Russell, Shrier Ian
Department of Mathematics and Statistics, McGill University, Montréal, Canada.
Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Canada.
Stat Med. 2020 Jul 30;39(17):2324-2338. doi: 10.1002/sim.8541. Epub 2020 Apr 28.
Many longitudinal databases record the occurrence of recurrent events over time. In this article, we propose a new method to estimate the average causal effect of a binary treatment for recurrent event data in the presence of confounders. We propose a doubly robust semiparametric estimator based on a weighted version of the Nelson-Aalen estimator and a conditional regression estimator under an assumed semiparametric multiplicative rate model for recurrent event data. We show that the proposed doubly robust estimator is consistent and asymptotically normal. In addition, a model diagnostic plot of residuals is presented to assess the adequacy of our proposed semiparametric model. We then evaluate the finite sample behavior of the proposed estimators under a number of simulation scenarios. Finally, we illustrate the proposed methodology via a database of circus artist injuries.
许多纵向数据库会记录随时间发生的复发事件。在本文中,我们提出了一种新方法,用于在存在混杂因素的情况下估计二元治疗对复发事件数据的平均因果效应。我们基于Nelson-Aalen估计器的加权版本和复发事件数据的假设半参数乘法率模型下的条件回归估计器,提出了一种双重稳健的半参数估计器。我们表明,所提出的双重稳健估计器是一致的且渐近正态。此外,还给出了残差的模型诊断图,以评估我们提出的半参数模型的充分性。然后,我们在多个模拟场景下评估了所提出估计器的有限样本行为。最后,我们通过一个马戏团艺术家受伤数据库说明了所提出的方法。