Suppr超能文献

数据自适应偏差减少的双重稳健估计

Data-Adaptive Bias-Reduced Doubly Robust Estimation.

作者信息

Vermeulen Karel, Vansteelandt Stijn

出版信息

Int J Biostat. 2016 May 1;12(1):253-82. doi: 10.1515/ijb-2015-0029.

Abstract

Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models. In this article, we extend this idea to incorporate the use of data-adaptive estimators (infinite-dimensional nuisance parameters), by exploiting the bias reduction estimation principle in the direction of only one nuisance parameter. We additionally provide an asymptotic linearity theorem which gives the influence function of the proposed doubly robust estimator under correct specification of a parametric nuisance working model for the missingness mechanism/propensity score but a possibly misspecified (finite- or infinite-dimensional) outcome working model. Simulation studies confirm the desirable finite-sample performance of the proposed estimators relative to a variety of other doubly robust estimators.

摘要

在因果推断和缺失数据文献中,现已针对各种目标参数提出了双稳健估计量。当两个干扰工作模型之一被正确设定时,无论设定的是哪一个,这些估计量都能在半参数模型下一致地估计感兴趣的参数。最近提出的偏差减少双稳健估计程序旨在在两个工作模型都被误设的更现实情况下部分保留这种稳健性。这些所谓的偏差减少双稳健估计量利用特殊的(有限维)干扰参数估计量,这些估计量旨在在两个参数工作模型都被误设的情况下,在这些有限维干扰参数的某些方向上局部最小化双稳健估计量的平方渐近偏差。在本文中,我们通过仅在一个干扰参数方向上利用偏差减少估计原理,将这一思想扩展到纳入数据自适应估计量(无限维干扰参数)的使用。我们还提供了一个渐近线性定理,该定理给出了在缺失机制/倾向得分的参数干扰工作模型被正确设定但结果工作模型可能被误设(有限维或无限维)的情况下,所提出的双稳健估计量的影响函数。模拟研究证实了所提出的估计量相对于各种其他双稳健估计量具有理想的有限样本性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验