Division of Informatics, Imaging and Data Sciences.
Division of Cancer Sciences, The University of Manchester, M13 9PG Manchester, UK.
Bioinformatics. 2020 Jul 1;36(13):4080-4087. doi: 10.1093/bioinformatics/btaa270.
Probabilistic latent semantic analysis (pLSA) is commonly applied to describe mass spectra (MS) images. However, the method does not provide certain outputs necessary for the quantitative scientific interpretation of data. In particular, it lacks assessment of statistical uncertainty and the ability to perform hypothesis testing. We show how linear Poisson modelling advances pLSA, giving covariances on model parameters and supporting χ2 testing for the presence/absence of MS signal components. As an example, this is useful for the identification of pathology in MALDI biological samples. We also show potential wider applicability, beyond MS, using magnetic resonance imaging (MRI) data from colorectal xenograft models.
Simulations and MALDI spectra of a stroke-damaged rat brain show MS signals from pathological tissue can be quantified. MRI diffusion data of control and radiotherapy-treated tumours further show high sensitivity hypothesis testing for treatment effects. Successful χ2 and degrees-of-freedom are computed, allowing null-hypothesis thresholding at high levels of confidence.
Open-source image analysis software available from TINA Vision, www.tina-vision.net.
Supplementary data are available at Bioinformatics online.
概率潜在语义分析(pLSA)常用于描述质谱(MS)图像。然而,该方法不能提供定量科学解释数据所必需的某些输出。特别是,它缺乏对统计不确定性的评估和进行假设检验的能力。我们展示了线性泊松模型如何推进 pLSA,为模型参数提供协方差,并支持 χ2 检验 MS 信号分量的存在/不存在。例如,这对于鉴定 MALDI 生物样本中的病理学很有用。我们还展示了其潜在的更广泛适用性,超越了 MS,使用来自结直肠异种移植模型的磁共振成像(MRI)数据。
模拟和中风损伤大鼠脑的 MALDI 光谱显示,病理组织的 MS 信号可以定量。对照和放射治疗肿瘤的 MRI 扩散数据进一步显示出对治疗效果的高灵敏度假设检验。成功计算了 χ2 和自由度,允许在高置信水平下对零假设进行阈值处理。
TINA Vision 提供了免费的开源图像分析软件,网址为 www.tina-vision.net。
补充数据可在生物信息学在线获得。