INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France.
Institut des Sciences du Mouvement, CNRS, Aix Marseille Université, Marseille, France.
J Neurophysiol. 2020 Jul 1;124(1):4-19. doi: 10.1152/jn.00381.2019. Epub 2020 Apr 29.
Humans excel at learning complex tasks, and elite performers such as musicians or athletes develop motor skills that defy biomechanical constraints. All actions require the movement of massive bodies. Of particular interest in the process of sensorimotor learning and control is the impact of gravitational forces on the body. Indeed, efficient control and accurate internal representations of the body configuration in space depend on our ability to feel and anticipate the action of gravity. Here we review studies on perception and sensorimotor control in both normal and altered gravity. Behavioral and modeling studies together suggested that the nervous system develops efficient strategies to take advantage of gravitational forces across a wide variety of tasks. However, when the body was exposed to altered gravity, the rate and amount of adaptation exhibited substantial variation from one experiment to another and sometimes led to partial adjustment only. Overall, these results support the hypothesis that the brain uses a multimodal and flexible representation of the effect of gravity on our body and movements. Future work is necessary to better characterize the nature of this internal representation and the extent to which it can adapt to novel contexts.
人类擅长学习复杂的任务,而像音乐家或运动员这样的精英表演者则发展出了超越生物力学限制的运动技能。所有动作都需要庞大的身体移动。在感觉运动学习和控制的过程中,特别引人关注的是重力对身体的影响。实际上,高效的控制和对身体在空间中的配置的准确内部表示依赖于我们感受和预测重力作用的能力。在这里,我们回顾了在正常和改变的重力环境下对感知和感觉运动控制的研究。行为和建模研究共同表明,神经系统发展出了高效的策略,可以在各种任务中利用重力。然而,当身体处于改变的重力环境中时,适应的速度和程度在一个实验到另一个实验之间存在很大的差异,有时只导致部分调整。总的来说,这些结果支持了这样一种假设,即大脑使用一种多模态和灵活的方式来表示重力对我们身体和运动的影响。未来的工作需要更好地描述这种内部表示的性质,以及它在多大程度上可以适应新的环境。