Suppr超能文献

应用癌细胞药物反应双相数学模型来制定针对三阴性乳腺癌细胞的强效和协同靶向药物组合。

Application of a Biphasic Mathematical Model of Cancer Cell Drug Response for Formulating Potent and Synergistic Targeted Drug Combinations to Triple Negative Breast Cancer Cells.

作者信息

Shen Jinyan, Li Li, Howlett Niall G, Cohen Paul S, Sun Gongqin

机构信息

Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA.

Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China.

出版信息

Cancers (Basel). 2020 Apr 27;12(5):1087. doi: 10.3390/cancers12051087.

Abstract

Triple negative breast cancer is a collection of heterogeneous breast cancers that are immunohistochemically negative for estrogen receptor, progesterone receptor, and ErbB2 (due to deletion or lack of amplification). No dominant proliferative driver has been identified for this type of cancer, and effective targeted therapy is lacking. In this study, we hypothesized that triple negative breast cancer cells are multi-driver cancer cells, and evaluated a biphasic mathematical model for identifying potent and synergistic drug combinations for multi-driver cancer cells. The responses of two triple negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to a panel of targeted therapy drugs were determined over a broad range of concentrations. The analyses of the drug responses by the biphasic mathematical model revealed that both cell lines were indeed dependent on multiple drivers, and inhibitors of individual drivers caused a biphasic response: a target-specific partial inhibition at low nM concentrations, and an off-target toxicity at μM concentrations. We further demonstrated that combinations of drugs, targeting each driver, cause potent, synergistic, and cell-specific cell killing. Immunoblotting analysis of the effects of the individual drugs and drug combinations on the signaling pathways supports the above conclusion. These results support a multi-driver proliferation hypothesis for these triple negative breast cancer cells, and demonstrate the applicability of the biphasic mathematical model for identifying effective and synergistic targeted drug combinations for triple negative breast cancer cells.

摘要

三阴性乳腺癌是一组异质性乳腺癌,其雌激素受体、孕激素受体和表皮生长因子受体2(由于缺失或缺乏扩增)免疫组化呈阴性。尚未确定这类癌症的主要增殖驱动因素,也缺乏有效的靶向治疗方法。在本研究中,我们假设三阴性乳腺癌细胞是多驱动癌细胞,并评估了一种双相数学模型,用于识别针对多驱动癌细胞的有效和协同药物组合。在广泛的浓度范围内,测定了两种三阴性乳腺癌细胞系MDA-MB-231和MDA-MB-468对一组靶向治疗药物的反应。通过双相数学模型对药物反应的分析表明,这两种细胞系确实依赖于多种驱动因素,单个驱动因素的抑制剂会引起双相反应:在低纳摩尔浓度下为靶点特异性部分抑制,在微摩尔浓度下为脱靶毒性。我们进一步证明,针对每个驱动因素的药物组合可导致强效、协同且细胞特异性的细胞杀伤。对单个药物和药物组合对信号通路影响的免疫印迹分析支持上述结论。这些结果支持了这些三阴性乳腺癌细胞的多驱动增殖假说,并证明了双相数学模型在识别三阴性乳腺癌细胞有效和协同靶向药物组合方面的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验