Suppr超能文献

“Ring Breaker”:基于神经网络的环系统化学空间合成预测。

"Ring Breaker": Neural Network Driven Synthesis Prediction of the Ring System Chemical Space.

机构信息

Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 50, Sweden.

Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland.

出版信息

J Med Chem. 2020 Aug 27;63(16):8791-8808. doi: 10.1021/acs.jmedchem.9b01919. Epub 2020 May 13.

Abstract

Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. "Ring Breaker" uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes.

摘要

药物、农药和染料中的环系统是无处不在的化学基序。虽然常见的环系统的合成已有很好的描述,并且新的环系统可以通过计算轻易枚举,但前所未有的环系统的合成可及性仍然是一个挑战。“环破坏者”(Ring Breaker)使用数据驱动的方法来实现对成环反应的预测,我们已经证明了它在常见和前所未有的环系统中的实用性,与文献合成一致。我们在 ZINC 和 DrugBank 数据库中的一系列环片段上展示了神经网络的性能,并强调了它在计算机辅助合成规划工具中的潜在应用。这些成环和逆合成切断的方法为化学家提供了探索和选择更有效合成/合成路线的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验