Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 50, Sweden.
Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland.
J Med Chem. 2020 Aug 27;63(16):8791-8808. doi: 10.1021/acs.jmedchem.9b01919. Epub 2020 May 13.
Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. "Ring Breaker" uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes.
药物、农药和染料中的环系统是无处不在的化学基序。虽然常见的环系统的合成已有很好的描述,并且新的环系统可以通过计算轻易枚举,但前所未有的环系统的合成可及性仍然是一个挑战。“环破坏者”(Ring Breaker)使用数据驱动的方法来实现对成环反应的预测,我们已经证明了它在常见和前所未有的环系统中的实用性,与文献合成一致。我们在 ZINC 和 DrugBank 数据库中的一系列环片段上展示了神经网络的性能,并强调了它在计算机辅助合成规划工具中的潜在应用。这些成环和逆合成切断的方法为化学家提供了探索和选择更有效合成/合成路线的机会。