Suppr超能文献

将有偏基因转换理论改编为新的突变,以解释人类基因组中密集 GC 含量的恶化。

Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations.

机构信息

Program in Bioinformatics and Proteomics/Genomics, University of Toledo, Toledo, OH, United States of America.

CRI Genetics LLC, Santa Monica, CA, United States of America.

出版信息

PLoS One. 2020 Apr 30;15(4):e0232167. doi: 10.1371/journal.pone.0232167. eCollection 2020.

Abstract

We examined seventy million well-characterized human mutations, and their impact on G+C-compositional dynamics, in order to understand the formation and maintenance of major genomic nucleotide sequence patterns. Among novel mutations, those that change a strong (S) base pair G:C/C:G to a weak (W) pair A:T/T:A occur at nearly twice the frequency of the opposite mutations. Such imbalance puts strong downward pressure on overall GC-content. However, along protracted paths to fixation, S→W mutations are much less likely to propagate than W→S mutations. The magnitude of relative propagation disadvantages for S→W mutations is inexplicable by any currently-accepted model. This fact forced us to re-examine the quantitative features of Biased Gene Conversion (BGC) theory. Revised parameters of BGC that, per average individual, convert 7-14 W base pairs into S pairs, would account for the S-content turnover differences between new and old mutations, and make BGC an instrumental force for nucleotide dynamics and evolution. BGC should thus be considered seriously in both theories and biomedical practice. In particular, BGC should be taken into account during allele imputations, where missing SNP alleles are computationally predicted based on the information about several neighboring alleles. Finally, we analyzed the effect of neighboring nucleotide context on the mutation frequencies, dynamics, and GC-composition turnover. For this purpose, we examined genomic regions having extremely biased nucleotide compositions (enriched for S-, W-, purine/pyrimidine strand asymmetry, or AC/GT-strand asymmetry). It was found that point mutations in these regions preferentially degrade the nucleotide inhomogeneities, decreasing the sequence biases. Degradation of sequence bias is highest for novel mutations, and considerably lower for older mutations (those widespread across populations). Besides BGC, there may be additional, still uncharacterized molecular mechanisms that either preserve genomic regions with biased nucleotide compositions from mutational degradation or fail to degrade such inhomogeneities in specific chromosomal regions.

摘要

我们研究了 7000 万个特征明确的人类突变,以及它们对 G+C 组成动态的影响,以了解主要基因组核苷酸序列模式的形成和维持。在新突变中,将强(S)碱基对 G:C/C:G 变为弱(W)碱基对 A:T/T:A 的突变发生的频率几乎是相反突变的两倍。这种不平衡对整体 GC 含量产生了强大的向下压力。然而,在漫长的固定化过程中,S→W 突变的传播几率远低于 W→S 突变。S→W 突变相对传播劣势的幅度无法用任何当前公认的模型来解释。这一事实迫使我们重新审视偏倚基因转换(BGC)理论的定量特征。经修订的 BGC 参数,平均每个个体将 7-14 个 W 碱基对转换为 S 对,将解释新旧突变之间 S 含量周转率的差异,并使 BGC 成为核苷酸动态和进化的重要力量。因此,在理论和生物医学实践中都应该认真考虑 BGC。特别是,在等位基因推断中应该考虑 BGC,在等位基因推断中,缺失的 SNP 等位基因是根据几个相邻等位基因的信息计算预测的。最后,我们分析了相邻核苷酸上下文对突变频率、动态和 GC 组成周转率的影响。为此,我们研究了具有极端偏置核苷酸组成的基因组区域(富含 S-、W-、嘌呤/嘧啶链不对称性或 AC/GT 链不对称性)。结果发现,这些区域的点突变优先降解核苷酸不均匀性,降低序列偏差。序列偏差的降解在新突变中最高,在较旧的突变(在人群中广泛存在的突变)中则较低。除了 BGC,可能还有其他尚未确定的分子机制,这些机制要么保护具有偏置核苷酸组成的基因组区域免受突变降解,要么无法在特定染色体区域降解这种不均匀性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/7192473/e644c7cc333c/pone.0232167.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验