Suppr超能文献

基于高通量测序和机器学习的血 miRNA 年龄推断:一项初步研究。

Age estimation using bloodstain miRNAs based on massive parallel sequencing and machine learning: A pilot study.

机构信息

Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China.

Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China.

出版信息

Forensic Sci Int Genet. 2020 Jul;47:102300. doi: 10.1016/j.fsigen.2020.102300. Epub 2020 Apr 22.

Abstract

Age estimation is one of the most important components in the practice of forensic science, especially for body fluids or stains at crime scenes. Recent studies have focused on the application of DNA methylation for chronological age determination in the field of forensic genetics. However, the amount of DNA and the complex bisulfite conversion process make applying this method in trace or degraded samples difficult. MicroRNAs (miRNAs), a group of small noncoding RNAs, have great potential in forensic science due to their antidegradation property and tissue specificity. Certain miRNAs are highly age-related and may have potential utility in age prediction. In this study, the expression profile of miRNAs from blood samples was explored using massive parallel sequencing; age-related miRNAs were subsequently selected for age prediction. We then established age prediction models for bloodstains based on six age-related miRNAs using seven machine learning models. Results revealed that the mean absolute error (MAE) was 5.52 and 7.46 years in male and female bloodstain samples, respectively, using the AdaBoost algorithm. This pilot study demonstrates the possibility of performing forensic age prediction using miRNAs and may provide useful information in future case investigations.

摘要

年龄估计是法医学实践中最重要的组成部分之一,尤其是在犯罪现场的体液或痕迹中。最近的研究集中在 DNA 甲基化在法医遗传学领域中用于确定年龄的应用上。然而,由于 DNA 数量和复杂的亚硫酸氢盐转化过程,使得该方法在痕量或降解样本中难以应用。微小 RNA(miRNA)是一组小的非编码 RNA,由于其抗降解特性和组织特异性,在法医学中有很大的应用潜力。某些 miRNA 与年龄高度相关,可能在年龄预测方面具有潜在的应用价值。在这项研究中,使用大规模平行测序技术探索了血液样本中 miRNA 的表达谱,随后选择了与年龄相关的 miRNA 用于年龄预测。然后,我们使用七种机器学习模型,基于六个与年龄相关的 miRNA 建立了血液斑迹的年龄预测模型。结果表明,使用 AdaBoost 算法,男性和女性血液斑迹样本的平均绝对误差(MAE)分别为 5.52 岁和 7.46 岁。这项初步研究表明,使用 miRNA 进行法医年龄预测是可行的,可能为未来的案件调查提供有用的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验