Duanmu Zhengfang, Liu Wentao, Li Zhuoran, Ma Kede, Wang Zhou
IEEE Trans Image Process. 2020 Apr 27. doi: 10.1109/TIP.2020.2988437.
Rate-distortion (RD) theory is at the heart of lossy data compression. Here we aim to model the generalized RD (GRD) trade-off between the visual quality of a compressed video and its encoding profiles (e.g., bitrate and spatial resolution). We first define the theoretical functional space W of the GRD function by analyzing its mathematical properties. We show that W is a convex set in a Hilbert space, inspiring a computational model of the GRD function, and a method of estimating model parameters from sparse measurements. To demonstrate the feasibility of our idea, we collect a large-scale database of real-world GRD functions, which turn out to live in a low-dimensional subspace of W. Combining the GRD reconstruction framework and the learned low-dimensional space, we create a low-parameter eigen GRD method to accurately estimate the GRD function of a source video content from only a few queries. Experimental results on the database show that the learned GRD method significantly outperforms state-of-the-art empirical RD estimation methods both in accuracy and efficiency. Last, we demonstrate the promise of the proposed model in video codec comparison.
率失真(RD)理论是有损数据压缩的核心。在此,我们旨在对压缩视频的视觉质量与其编码配置文件(例如,比特率和空间分辨率)之间的广义RD(GRD)权衡进行建模。我们首先通过分析其数学性质来定义GRD函数的理论函数空间W。我们表明W是希尔伯特空间中的一个凸集,这激发了GRD函数的计算模型以及一种从稀疏测量中估计模型参数的方法。为了证明我们想法的可行性,我们收集了一个大规模的真实世界GRD函数数据库,结果发现这些函数存在于W的一个低维子空间中。结合GRD重建框架和学习到的低维空间,我们创建了一种低参数本征GRD方法,仅通过几次查询就能准确估计源视频内容的GRD函数。在该数据库上的实验结果表明,所学习的GRD方法在准确性和效率方面均显著优于当前最先进的经验性RD估计方法。最后,我们展示了所提出模型在视频编解码器比较中的前景。