Suppr超能文献

抑制奥斯特瓦尔德熟化以在开放环境条件下直接铸造三维多孔氧化石墨烯块体。

Retarding Ostwald Ripening to Directly Cast 3D Porous Graphene Oxide Bulks at Open Ambient Conditions.

作者信息

Yang Hongsheng, Jin Xuting, Sun Guoqiang, Li Zengling, Gao Jian, Lu Bing, Shao Changxiang, Zhang Xinqun, Dai Chunlong, Zhang Zhipan, Chen Nan, Lupi Stefano, Marcelli Augusto, Qu Liangti

机构信息

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong, People's Republic of China.

出版信息

ACS Nano. 2020 May 26;14(5):6249-6257. doi: 10.1021/acsnano.0c02379. Epub 2020 May 7.

Abstract

Graphene aerogels (GAs) with attractive properties have shown tremendous potentials in energy- and environment-related applications. Unfortunately, current assembly methods for GAs such as sol-gel and freeze-casting processes must be conducted in enclosed spaces with unconventional conditions, thus being literally inoperative for and continuous productions. Herein, a direct slurry-casting method at open ambient conditions is established to arbitrarily prepare three-dimensional (3D) porous graphene oxide (GO) bulks without macroscopic dimension limits on a wide range of solid surfaces by retarding Ostwald ripening of 3D liquid GO foams when being dried in air. A subsequent fast thermal reduction (FTR) of GO foams leads to the formation of graphene aerogels (denoted as FTR-GAs) with hierarchical closed-cellular graphene structures. The FTR-GAs show outstanding high-temperature thermal insulation (70% decrease for 400 °C), as well as superelasticity (>1000 compression-recovery cycles at 50% strain), ultralow density (10-28 mg cm), large specific surface area (BET, 206.8 m g), and high conductivity (. 100 S m). This work provides a viable method to achieve preparations of high-performance GAs as multifunctional structural materials in aircrafts, high-speed trains, or even buildings for the targets of energy efficiency, comfort, and safety.

摘要

具有诱人特性的石墨烯气凝胶(GAs)在能源和环境相关应用中展现出了巨大潜力。不幸的是,目前用于制备石墨烯气凝胶的方法,如溶胶 - 凝胶法和冷冻铸造法,必须在具有非常规条件的封闭空间中进行,因此实际上无法进行大规模和连续生产。在此,我们建立了一种在开放环境条件下的直接浆料浇铸法,通过抑制三维液体氧化石墨烯(GO)泡沫在空气中干燥时的奥斯特瓦尔德熟化,在各种固体表面上任意制备无宏观尺寸限制的三维(3D)多孔氧化石墨烯(GO)块体。随后对GO泡沫进行快速热还原(FTR),导致形成具有分级闭孔石墨烯结构的石墨烯气凝胶(记为FTR - GAs)。FTR - GAs表现出出色的高温隔热性能(400℃时降低70%)、超弹性(50%应变下>1000次压缩 - 恢复循环)、超低密度(10 - 28 mg cm)、大比表面积(BET,206.8 m g)和高电导率(. 100 S m)。这项工作提供了一种可行的方法,可实现高性能GAs的大规模制备,作为飞机、高速列车甚至建筑物中的多功能结构材料,以实现能源效率、舒适性和安全性的目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验