Koppe Jonas, Hansen Michael Ryan
Institute for Physical Chemistry, Westfälische Wilhelms-Universität, Corrensstr. 28/30, DE-48149 Münster, Germany.
Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität, Corrensstrasse 40, D-48149 Münster, Germany.
J Phys Chem A. 2020 May 28;124(21):4314-4321. doi: 10.1021/acs.jpca.0c03658. Epub 2020 May 15.
Chirped excitation using frequency-swept wideline uniform rate smooth truncation (WURST) pulses in combination with Carr-Purcell-Meiboom-Gill acquisition (WCPMG) is currently the state-of-the-art method for the direct observation of the central transition (CT) in static ultra-wideline nuclear magnetic resonance (NMR) of half-integer spin quadrupolar nuclei. However, CT lineshape distortions and an inefficient, large number of transmitter steps in frequency-stepped acquisition are two major drawbacks. Here, we identify three main sources for lineshape distortions occurring in WCPMG NMR spectra of the CT: (I) distortions due to inaccurate setting of the radio frequency field strength, (II) chirped-excitation artifacts, and (III) distortions due to non-selective irradiation. A new and efficient approach for the acquisition minimizing these distortions is presented using low sweep rates ( ≤ 5 kHz/μs) and sweep widths (Δ ≤ 600 kHz). We further demonstrate that such an acquisition strategy also minimizes the number of transmitter steps in ultra-wideline NMR. This is achieved from numerical simulations and theoretical analysis of the orientational dependence for the quadrupolar-perturbed Zeeman states and their transition frequencies. The theoretically derived strategies are validated experimentally, allowing us to set up guidelines for the optimum recording of wideline and ultra-wideline WCPMG NMR spectra.
使用频率扫描宽带均匀速率平滑截断(WURST)脉冲结合Carr-Purcell-Meiboom-Gill采集(WCPMG)的啁啾激发,是目前在半整数自旋四极核的静态超宽带核磁共振(NMR)中直接观测中心跃迁(CT)的最先进方法。然而,CT线形畸变以及频率步进采集中效率低下、大量的发射机步骤是两个主要缺点。在此,我们确定了CT的WCPMG NMR谱中出现线形畸变的三个主要来源:(I)由于射频场强设置不准确导致的畸变,(II)啁啾激发伪影,以及(III)由于非选择性照射导致的畸变。提出了一种新的高效采集方法,通过使用低扫描速率(≤5 kHz/μs)和扫描宽度(Δ≤600 kHz)来最小化这些畸变。我们进一步证明,这种采集策略还能最小化超宽带NMR中的发射机步骤数量。这是通过对四极扰动塞曼态及其跃迁频率的取向依赖性进行数值模拟和理论分析实现的。理论推导的策略通过实验得到验证,使我们能够为记录宽带和超宽带WCPMG NMR谱制定最佳指导原则。