Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Cells. 2020 Apr 26;9(5):1074. doi: 10.3390/cells9051074.
Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.
缺血性脑卒中是人类最常见的疾病之一,也是死亡和残疾的主要原因。组织型纤溶酶原激活物(t-PA)溶栓治疗和手术取栓是再通闭塞血管和恢复缺血及缺血周围区域血流的主要治疗方法。绝大多数脑卒中患者对治疗无反应或因治疗效果的时间窗较窄而不适合治疗。近几十年来,我们对导致梗死和损伤周围脑区进行性损伤的分子和细胞机制有了更深入的了解。因此,在几种脑卒中模型中已经确定并利用了有前途的神经保护靶点。然而,这些显著的进展在临床背景下并未成功。这种缺乏临床转化能力以及生物材料在不同生物医学学科中的新兴应用,促使人们开发了一类新的基于生物材料的系统,以更好地控制脑疾病中的药物递送。这些系统基于特定的聚合物配方,结构为纳米颗粒和水凝胶,可以通过不同的途径给药,通常可以将药物浓度维持在治疗水平较长时间。在这篇综述中,我们首先提供了脑缺血损伤的分子和细胞机制的一般背景,强调了兴奋性毒性、炎症、氧化应激和去极化波作为促进神经保护、避免神经元功能障碍的主要途径和靶点的作用。在第二部分,我们讨论了不同生物材料和形式所起的多方面作用,以支持特定化合物的持续给药,从而保护易受损伤的脑组织。