Suppr超能文献

生物材料对脑卒中脑的神经保护:小窗期的大机遇。

Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows.

机构信息

Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

出版信息

Cells. 2020 Apr 26;9(5):1074. doi: 10.3390/cells9051074.

Abstract

Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.

摘要

缺血性脑卒中是人类最常见的疾病之一,也是死亡和残疾的主要原因。组织型纤溶酶原激活物(t-PA)溶栓治疗和手术取栓是再通闭塞血管和恢复缺血及缺血周围区域血流的主要治疗方法。绝大多数脑卒中患者对治疗无反应或因治疗效果的时间窗较窄而不适合治疗。近几十年来,我们对导致梗死和损伤周围脑区进行性损伤的分子和细胞机制有了更深入的了解。因此,在几种脑卒中模型中已经确定并利用了有前途的神经保护靶点。然而,这些显著的进展在临床背景下并未成功。这种缺乏临床转化能力以及生物材料在不同生物医学学科中的新兴应用,促使人们开发了一类新的基于生物材料的系统,以更好地控制脑疾病中的药物递送。这些系统基于特定的聚合物配方,结构为纳米颗粒和水凝胶,可以通过不同的途径给药,通常可以将药物浓度维持在治疗水平较长时间。在这篇综述中,我们首先提供了脑缺血损伤的分子和细胞机制的一般背景,强调了兴奋性毒性、炎症、氧化应激和去极化波作为促进神经保护、避免神经元功能障碍的主要途径和靶点的作用。在第二部分,我们讨论了不同生物材料和形式所起的多方面作用,以支持特定化合物的持续给药,从而保护易受损伤的脑组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/617c/7291200/5039de04779b/cells-09-01074-g001.jpg

相似文献

2
Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches.
Eur J Pharmacol. 2018 Aug 15;833:531-544. doi: 10.1016/j.ejphar.2018.06.028. Epub 2018 Jun 20.
3
Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.
Stroke. 2003 Aug;34(8):e109-37. doi: 10.1161/01.STR.0000082721.62796.09. Epub 2003 Jul 17.
4
The application of nanoparticles for neuroprotection in acute ischemic stroke.
Ther Deliv. 2017 Oct;8(10):915-928. doi: 10.4155/tde-2017-0023.
5
Perspective insights into hydrogels and nanomaterials for ischemic stroke.
Front Cell Neurosci. 2023 Jan 24;16:1058753. doi: 10.3389/fncel.2022.1058753. eCollection 2022.
6
Treatments in Ischemic Stroke: Current and Future.
Eur Neurol. 2022;85(5):349-366. doi: 10.1159/000525822. Epub 2022 Aug 2.
8
Tissue plasminogen activator-based nanothrombolysis for ischemic stroke.
Expert Opin Drug Deliv. 2018 Feb;15(2):173-184. doi: 10.1080/17425247.2018.1384464. Epub 2017 Sep 28.
9
Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke.
Drug Deliv. 2021 Dec;28(1):357-371. doi: 10.1080/10717544.2021.1879315.

引用本文的文献

1
A review: Carrier-based hydrogels containing bioactive molecules and stem cells for ischemic stroke therapy.
Bioact Mater. 2025 Mar 5;49:39-62. doi: 10.1016/j.bioactmat.2025.01.014. eCollection 2025 Jul.
2
Curcumin encapsulated in PAMAM dendrimers for the therapeutic treatment of ischemic stroke in rats.
Front Cell Dev Biol. 2025 Jan 6;12:1467417. doi: 10.3389/fcell.2024.1467417. eCollection 2024.
3
Mild hypercapnia before reperfusion reduces ischemia-reperfusion injury in hyperacute ischemic stroke rat model.
J Cereb Blood Flow Metab. 2025 Apr;45(4):664-676. doi: 10.1177/0271678X241296367. Epub 2024 Oct 30.
5
Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis.
Mol Neurobiol. 2025 Jan;62(1):184-220. doi: 10.1007/s12035-024-04215-3. Epub 2024 Jun 3.
6
Resistance to Degradation of Silk Fibroin Hydrogels Exposed to Neuroinflammatory Environments.
Polymers (Basel). 2023 May 28;15(11):2491. doi: 10.3390/polym15112491.
7
Non-human primate models of focal cortical ischemia for neuronal replacement therapy.
J Cereb Blood Flow Metab. 2023 Sep;43(9):1456-1474. doi: 10.1177/0271678X231179544. Epub 2023 May 31.
8
Microglia autophagy in ischemic stroke: A double-edged sword.
Front Immunol. 2022 Nov 16;13:1013311. doi: 10.3389/fimmu.2022.1013311. eCollection 2022.
9
Neurotrophic factor-based pharmacological approaches in neurological disorders.
Neural Regen Res. 2023 Jun;18(6):1220-1228. doi: 10.4103/1673-5374.358619.

本文引用的文献

1
Extracellular Matrix (ECM)-Mimicking Neuroprotective Injectable Sulfo-Functionalized Peptide Hydrogel for Repairing Brain Injury.
ACS Biomater Sci Eng. 2020 Apr 13;6(4):2287-2296. doi: 10.1021/acsbiomaterials.9b01829. Epub 2020 Mar 30.
3
Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke.
Nat Neurosci. 2020 Mar;23(3):351-362. doi: 10.1038/s41593-020-0585-y. Epub 2020 Feb 10.
4
Moving hydrogels to the fourth dimension.
Nat Mater. 2019 Sep;18(9):914-915. doi: 10.1038/s41563-019-0458-5.
5
Convection-Enhanced Delivery in Malignant Gliomas: A Review of Toxicity and Efficacy.
J Oncol. 2019 Jul 22;2019:9342796. doi: 10.1155/2019/9342796. eCollection 2019.
6
Global brain inflammation in stroke.
Lancet Neurol. 2019 Nov;18(11):1058-1066. doi: 10.1016/S1474-4422(19)30078-X. Epub 2019 Jul 8.
7
Evaluation of Neurosecretome from Mesenchymal Stem Cells Encapsulated in Silk Fibroin Hydrogels.
Sci Rep. 2019 Jun 19;9(1):8801. doi: 10.1038/s41598-019-45238-4.
8
Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials.
Nat Mater. 2019 Sep;18(9):1005-1014. doi: 10.1038/s41563-019-0367-7. Epub 2019 May 20.
9
Iron oxide nanoclusters for T magnetic resonance imaging of non-human primates.
Nat Biomed Eng. 2017 Aug;1(8):637-643. doi: 10.1038/s41551-017-0116-7. Epub 2017 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验