Suppr超能文献

驱动轴突再生的轴内机制。

Intra-axonal mechanisms driving axon regeneration.

机构信息

Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.

Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.

出版信息

Brain Res. 2020 Aug 1;1740:146864. doi: 10.1016/j.brainres.2020.146864. Epub 2020 Apr 28.

Abstract

Traumatic injury to the peripheral and central nervous systems very often causes axotomy, where an axon loses connections with its target resulting in loss of function. The axon segments distal to the injury site lose connection with the cell body and degenerate. Axotomized neurons in the periphery can spontaneously mount a regenerative response and reconnect to their denervated target tissues, though this is rarely complete in humans. In contrast, spontaneous regeneration rarely occurs after axotomy in the spinal cord and brain. Here, we concentrate on the mechanisms underlying this spontaneous regeneration in the peripheral nervous system, focusing on events initiated from the axon that support regenerative growth. We contrast this with what is known for axonal injury responses in the central nervous system. Considering the neuropathy focus of this special issue, we further draw parallels and distinctions between the injury-response mechanisms that initiate regenerative gene expression programs and those that are known to trigger axon degeneration.

摘要

周围和中枢神经系统的创伤性损伤常常导致轴突切断,其中轴突失去与靶标之间的连接,导致功能丧失。损伤部位远端的轴突段与细胞体失去连接并退化。外周的轴突切断神经元可以自发地启动再生反应并重新连接到去神经的靶组织,尽管在人类中很少完全恢复。相比之下,脊髓和大脑中的轴突切断后很少发生自发再生。在这里,我们专注于周围神经系统中这种自发再生的机制,重点关注支持再生生长的轴突启动的事件。我们将其与中枢神经系统中轴突损伤反应的已知情况进行对比。考虑到本期特刊的神经病变重点,我们进一步比较和区分了启动再生基因表达程序的损伤反应机制和已知触发轴突退化的机制。

相似文献

1
Intra-axonal mechanisms driving axon regeneration.
Brain Res. 2020 Aug 1;1740:146864. doi: 10.1016/j.brainres.2020.146864. Epub 2020 Apr 28.
3
The role of neurotrophic factors in nerve regeneration.
Neurosurg Focus. 2009 Feb;26(2):E3. doi: 10.3171/FOC.2009.26.2.E3.
4
Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats.
Exp Neurol. 2015 Jul;269:142-53. doi: 10.1016/j.expneurol.2015.03.022. Epub 2015 Apr 2.
5
Neural plasticity after peripheral nerve injury and regeneration.
Prog Neurobiol. 2007 Jul;82(4):163-201. doi: 10.1016/j.pneurobio.2007.06.005. Epub 2007 Jun 22.
6
Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats.
Neuroscience. 2008 Jul 31;155(1):90-103. doi: 10.1016/j.neuroscience.2008.04.074. Epub 2008 May 9.
7
Prolonged target deprivation reduces the capacity of injured motoneurons to regenerate.
Neurosurgery. 2007 Apr;60(4):723-32; discussion 732-3. doi: 10.1227/01.NEU.0000255412.63184.CC.
9
Unraveling Axon Guidance during Axotomy and Regeneration.
Int J Mol Sci. 2021 Aug 3;22(15):8344. doi: 10.3390/ijms22158344.
10
Cell death and axon regeneration of Purkinje cells after axotomy: challenges of classical hypotheses of axon regeneration.
Brain Res Brain Res Rev. 2005 Sep;49(2):300-16. doi: 10.1016/j.brainresrev.2004.11.007. Epub 2005 Mar 2.

引用本文的文献

1
Regulation of Subcellular Protein Synthesis for Restoring Neural Connectivity.
Int J Mol Sci. 2025 Jul 28;26(15):7283. doi: 10.3390/ijms26157283.
3
Disruption of G3BP1 granules promotes mammalian CNS and PNS axon regeneration.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2411811122. doi: 10.1073/pnas.2411811122. Epub 2025 Feb 27.
6
Voltage-gated calcium channels act upstream of adenylyl cyclase Ac78C to promote timely initiation of dendrite regeneration.
PLoS Genet. 2024 Aug 26;20(8):e1011388. doi: 10.1371/journal.pgen.1011388. eCollection 2024 Aug.
7
Physical Forces in Regeneration of Cells and Tissues.
Cold Spring Harb Perspect Biol. 2025 Apr 1;17(4):a041527. doi: 10.1101/cshperspect.a041527.
8
How do neurons age? A focused review on the aging of the microtubular cytoskeleton.
Neural Regen Res. 2024 Sep 1;19(9):1899-1907. doi: 10.4103/1673-5374.390974. Epub 2023 Dec 15.
9
Modulating mitochondrial calcium channels (TRPM2/MCU/NCX) as a therapeutic strategy for neurodegenerative disorders.
Front Neurosci. 2023 Oct 20;17:1202167. doi: 10.3389/fnins.2023.1202167. eCollection 2023.
10
Integrin-Driven Axon Regeneration in the Spinal Cord Activates a Distinctive CNS Regeneration Program.
J Neurosci. 2023 Jun 28;43(26):4775-4794. doi: 10.1523/JNEUROSCI.2076-22.2023. Epub 2023 Jun 5.

本文引用的文献

1
Axonal precursor miRNAs hitchhike on endosomes and locally regulate the development of neural circuits.
EMBO J. 2020 Mar 16;39(6):e102513. doi: 10.15252/embj.2019102513. Epub 2020 Feb 19.
2
Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration.
Commun Biol. 2020 Jan 30;3(1):49. doi: 10.1038/s42003-020-0776-9.
4
Mechanism and role of the intra-axonal Calreticulin translation in response to axonal injury.
Exp Neurol. 2020 Jan;323:113072. doi: 10.1016/j.expneurol.2019.113072. Epub 2019 Oct 25.
5
Pum2 Shapes the Transcriptome in Developing Axons through Retention of Target mRNAs in the Cell Body.
Neuron. 2019 Dec 4;104(5):931-946.e5. doi: 10.1016/j.neuron.2019.08.035. Epub 2019 Oct 9.
6
RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether.
Cell. 2019 Sep 19;179(1):147-164.e20. doi: 10.1016/j.cell.2019.08.050.
7
Axon death signalling in Wallerian degeneration among species and in disease.
Open Biol. 2019 Aug 30;9(8):190118. doi: 10.1098/rsob.190118. Epub 2019 Aug 28.
8
ADF/Cofilin-Mediated Actin Turnover Promotes Axon Regeneration in the Adult CNS.
Neuron. 2019 Sep 25;103(6):1073-1085.e6. doi: 10.1016/j.neuron.2019.07.007. Epub 2019 Aug 7.
9
Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules.
Neuron. 2019 Oct 23;104(2):290-304.e8. doi: 10.1016/j.neuron.2019.07.004. Epub 2019 Aug 1.
10
Epigenetic Regulation Of Axon Regeneration and Glial Activation in Injury Responses.
Front Genet. 2019 Jul 9;10:640. doi: 10.3389/fgene.2019.00640. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验