Han Jie, Zhang Ao, Chen Mingxing, Gao Wang, Jiang Qing
Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University 130022, Changchun, China.
Nanoscale. 2020 May 14;12(18):10277-10283. doi: 10.1039/d0nr00443j.
The search for a one-dimensional (1D) system with purely 1D bands and strong Rashba spin splitting is essential for the realization of Majorana fermions and spin transport but presents a fundamental challenge to date. Herein, using first-principles calculations, we demonstrated that atomic Tellurium (Te) chains exhibit purely 1D bands and giant Rashba spin splitting, and their splitting parameters depend strongly on strain and structure distortion. This phenomenon stems from the helical structure of atomic Te chains, which can not only sustain significant strain but also realize the synergy of orbital angular momentum and in-chain potential gradient in enhancing spin splitting. The structure distortion of stretched helical Te chains is critical to execute this synergy, generating a large Rashba spin splitting among the known systems. Our findings proposed a potential 1D giant Rashba splitting system for exploring spintronics and Majorana fermions, and provide routes for engineering spin splitting in other materials.
寻找具有纯一维能带和强 Rashba 自旋分裂的一维(1D)系统对于实现马约拉纳费米子和自旋输运至关重要,但迄今为止这仍是一个根本性挑战。在此,我们通过第一性原理计算表明,原子碲(Te)链呈现出纯一维能带和巨大的 Rashba 自旋分裂,并且它们的分裂参数强烈依赖于应变和结构畸变。这种现象源于原子碲链的螺旋结构,它不仅能够承受显著的应变,还能在增强自旋分裂方面实现轨道角动量与链内势梯度的协同作用。拉伸螺旋碲链的结构畸变对于实现这种协同作用至关重要,在已知系统中产生了较大的 Rashba 自旋分裂。我们的研究结果提出了一个用于探索自旋电子学和马约拉纳费米子的潜在一维巨大 Rashba 分裂系统,并为在其他材料中设计自旋分裂提供了途径。