Ma Shenghua, Han Zheng, Leng Kunyue, Liu Xiaojie, Wang Yi, Qu Yunteng, Bai Jinbo
Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, China.
Small. 2020 Jun;16(23):e2001384. doi: 10.1002/smll.202001384. Epub 2020 May 4.
Regulating the coordination environment of atomically dispersed catalysts is vital for catalytic reaction but still remains a challenge. Herein, an ionic exchange strategy is developed to fabricate atomically dispersed copper (Cu) catalysts with controllable coordination structure. In this process, the adsorbed Cu ions exchange with Zn nodes in ZIF-8 under high temperature, resulting in the trapping of Cu atoms within the cavities of the metal-organic framework, and thus forming Cu single-atom catalysts. More importantly, altering pyrolysis temperature can effectively control the structure of active metal center at atomic level. Specifically, higher treatment temperature (900 °C) leads to unsaturated Cu-nitrogen architecture (CuN moieties) in atomically dispersed Cu catalysts. Electrochemical test indicates atomically dispersed Cu catalysts with CuN moieties possess superior oxygen reduction reaction performance than that with higher Cu-nitrogen coordination number (CuN moieties), with a higher half-wave potential of 180 mV and the 10 times turnover frequency than that of CuN . Density functional theory calculation analysis further shows that the low N coordination number of Cu single-atom catalysts (CuN ) is favorable for the formation of O * intermediate, and thus boosts the oxygen reduction reaction.
调控原子分散催化剂的配位环境对于催化反应至关重要,但仍然是一个挑战。在此,开发了一种离子交换策略来制备具有可控配位结构的原子分散铜(Cu)催化剂。在这个过程中,吸附的铜离子在高温下与ZIF-8中的锌节点发生交换,导致铜原子被困在金属有机框架的空腔内,从而形成铜单原子催化剂。更重要的是,改变热解温度可以在原子水平上有效控制活性金属中心的结构。具体而言,较高的处理温度(900°C)会导致原子分散的铜催化剂中形成不饱和的铜-氮结构(CuN基团)。电化学测试表明,具有CuN基团的原子分散铜催化剂比具有较高铜-氮配位数(CuN基团)的催化剂具有更优异的氧还原反应性能,其半波电位高出180 mV,周转频率是CuN的10倍。密度泛函理论计算分析进一步表明,铜单原子催化剂(CuN)的低氮配位数有利于O*中间体的形成,从而促进氧还原反应。