Flanagan Jennifer C, Cardenas Alfredo E, Baiz Carlos R
J Phys Chem Lett. 2020 May 21;11(10):4093-4098. doi: 10.1021/acs.jpclett.0c00783. Epub 2020 May 7.
Biology takes place in crowded, heterogeneous environments, and it is therefore essential to account for crowding effects in our understanding of biophysical processes at the molecular level. Comparable to the cytosol, proteins occupy approximately 30% of the plasma membrane surface; thus, crowding should have an effect on the local structure and dynamics at the lipid-water interface. Using a combination of ultrafast two-dimensional infrared spectroscopy and molecular dynamics simulations, we quantify the effects of membrane peptide concentration on the picosecond interfacial H-bond dynamics. The measurements reveal a nonmonotonic dependence of water orientation and dynamics as a function of transmembrane peptide:lipid ratio. We observe three dynamical regimes: a "pure lipid-like" regime at low peptide concentrations, a bulk-like region at intermediate peptide concentrations where dynamics are faster by ∼20% compared to those of the pure lipid bilayer, and a crowded regime where high peptide concentrations slow dynamics by ∼50%.
生物学过程发生在拥挤、异质的环境中,因此在我们从分子水平理解生物物理过程时,考虑拥挤效应至关重要。与细胞质溶胶类似,蛋白质占据了大约30%的质膜表面;因此,拥挤效应应该会对脂质 - 水界面的局部结构和动力学产生影响。我们结合使用超快二维红外光谱和分子动力学模拟,量化了膜肽浓度对皮秒级界面氢键动力学的影响。测量结果揭示了水的取向和动力学与跨膜肽 - 脂质比率之间的非单调依赖性。我们观察到三种动力学状态:低肽浓度下的“纯脂质样”状态、中等肽浓度下的类似本体区域(与纯脂质双层相比,动力学速度快约20%)以及高肽浓度下使动力学减慢约50%的拥挤状态。