Suppr超能文献

使用人工神经网络预测全髋关节置换术中的撞击和脱位。

Using artificial neural networks to predict impingement and dislocation in total hip arthroplasty.

作者信息

Alastruey-López D, Ezquerra L, Seral B, Pérez M A

机构信息

M2BE-Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Aragón Institute of Health Science (IACS), Universidad de Zaragoza, Zaragoza, España.

Hospital San Jorge, Huesca, Spain.

出版信息

Comput Methods Biomech Biomed Engin. 2020 Aug;23(10):649-657. doi: 10.1080/10255842.2020.1757661. Epub 2020 May 4.

Abstract

Dislocation after total hip arthroplasty (THA) remains a major issue and an important post-surgical complication. Impingement and subsequent dislocation are influenced by the design (head size) and position (anteversion and abduction angles) of the acetabulum and different movements of the patient, with external extension and internal flexion the most critical movements. The aim of this study is to develop a computational tool based on a three-dimensional (3D) parametric finite element (FE) model and an artificial neural network (ANN) to assist clinicians in identifying the optimal prosthesis design and position of the acetabular cup to reduce the probability of impingement and dislocation. A 3D parametric model of a THA was used. The model parameters were the femoral head size and the acetabulum abduction and anteversion angles. Simulations run with this parametric model were used to train an ANN, which predicts the range of movement (ROM) before impingement and dislocation. This study recreates different configurations and obtains absolute errors lower than 5.5° between the ROM obtained from the FE simulations and the ANN predictions. The ROM is also predicted for patients who had already suffered dislocation after THA, and the computational predictions confirm the patient's dislocations. Summarising, the combination of a 3D parametric FE model of a THA and an ANN is a useful computational tool to predict the ROM allowed for different designs of prosthesis heads.

摘要

全髋关节置换术(THA)后的脱位仍然是一个主要问题和重要的术后并发症。髋臼的设计(股骨头大小)和位置(前倾角和外展角)以及患者的不同动作会影响撞击及随后的脱位,其中外展伸展和内收屈曲是最关键的动作。本研究的目的是基于三维(3D)参数有限元(FE)模型和人工神经网络(ANN)开发一种计算工具,以协助临床医生确定髋臼杯的最佳假体设计和位置,从而降低撞击和脱位的概率。使用了THA的3D参数模型。模型参数为股骨头大小以及髋臼外展角和前倾角。利用该参数模型进行的模拟用于训练一个ANN,该ANN可预测撞击和脱位前的活动范围(ROM)。本研究重现了不同的构型,并且有限元模拟得到的ROM与ANN预测值之间获得了低于5.5°的绝对误差。还对THA后已经发生脱位的患者的ROM进行了预测,计算预测结果证实了患者的脱位情况。总之,THA的3D参数有限元模型与ANN的结合是一种有用的计算工具,可预测不同设计的假体头所允许的ROM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验