School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China.
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Sensors (Basel). 2020 Apr 29;20(9):2515. doi: 10.3390/s20092515.
This research presents a novel sample-based path planning algorithm for adaptive sampling. The goal is to find a near-optimal path for unmanned marine vehicles (UMVs) that maximizes information gathering over a scientific interest area, while satisfying constraints on collision avoidance and pre-specified mission time. The proposed rapidly-exploring adaptive sampling tree star (RAST*) algorithm combines inspirations from rapidly-exploring random tree star (RRT*) with a tournament selection method and informative heuristics to achieve efficient searching of informative data in continuous space. Results of numerical experiments and proof-of-concept field experiments demonstrate the effectiveness and superiority of the proposed RAST* over rapidly-exploring random sampling tree star (RRST*), rapidly-exploring adaptive sampling tree (RAST), and particle swarm optimization (PSO).
本研究提出了一种新的基于样本的路径规划算法,用于自适应采样。目标是为无人海洋车辆 (UMV) 找到一条近最优路径,在满足避碰约束和预定任务时间的前提下,最大限度地收集科学兴趣区域内的信息。所提出的快速探索自适应采样树星 (RAST*) 算法结合了快速探索随机树星 (RRT*) 的灵感,采用锦标赛选择方法和信息启发式方法,以实现连续空间中信息数据的有效搜索。数值实验和概念验证现场实验的结果表明,所提出的 RAST* 算法优于快速探索随机采样树星 (RRST*)、快速探索自适应采样树 (RAST) 和粒子群优化 (PSO) 算法。