Suppr超能文献

用于动脉自旋标记(ASL)定量的通用动力学模型的数值近似。

Numerical approximation to the general kinetic model for ASL quantification.

作者信息

Lee Nam G, Javed Ahsan, Jao Terrence R, Nayak Krishna S

机构信息

Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA.

出版信息

Magn Reson Med. 2020 Nov;84(5):2846-2857. doi: 10.1002/mrm.28304. Epub 2020 May 4.

Abstract

PURPOSE

To develop a numerical approximation to the general kinetic model for arterial spin labeling (ASL) quantification that will enable greater flexibility in ASL acquisition methods.

THEORY

The Bloch-McConnell equations are extended to include the effects of single-compartment inflow and outflow on both the transverse and longitudinal magnetization. These can be solved using an extension of Jaynes' matrix formalism with piecewise constant approximation of incoming labeled arterial flow and a clearance operator for outgoing venous flow.

METHODS

The proposed numerical approximation is compared with the general kinetic model using simulations of pulsed labeling and pseudo-continuous labeling and a broad range of transit time and bolus duration for tissue blood flow of 0.6 mL/g/min. Accuracy of the approximation is studied as a function of the timestep using Monte-Carlo simulations. Three additional scenarios are demonstrated: (1) steady-pulsed ASL, (2) MR fingerprinting ASL, and (3) balanced SSFP and spoiled gradient-echo sequences.

RESULTS

The proposed approximation was found to be arbitrarily accurate for pulsed labeling and pseudo-continuous labeling. The pulsed labeling/pseudo-continuous labeling approximation error compared with the general kinetic model was less than 0.002% (<0.002%) and less than 0.05% (<0.05%) for timesteps of 3 ms and 35 ms, respectively. The proposed approximation matched well with customized signal expressions of steady-pulsed ASL and MR fingerprinting ASL. The simulations of simultaneous modeling of flow, T , and magnetization transfer showed an increase in steady-state balanced SSFP and spoiled gradient signals.

CONCLUSION

We demonstrate a numerical approximation of the "Bloch-McConnell flow" equations that enables arbitrarily accurate modeling of pulsed ASL and pseudo-continuous labeling signals comparable to the general kinetic model. This enables increased flexibility in the experiment design for quantitative ASL.

摘要

目的

开发一种用于动脉自旋标记(ASL)定量的通用动力学模型的数值近似方法,以在ASL采集方法上实现更大的灵活性。

理论

布洛赫 - 麦康奈尔方程被扩展,以纳入单室流入和流出对横向和纵向磁化的影响。这些方程可以使用杰恩斯矩阵形式的扩展来求解,对进入的标记动脉血流采用分段常数近似,并对流出的静脉血流使用清除算子。

方法

使用脉冲标记和伪连续标记的模拟以及组织血流为0.6 mL/g/min时广泛的通过时间和团注持续时间,将所提出的数值近似方法与通用动力学模型进行比较。使用蒙特卡罗模拟研究近似的准确性作为时间步长的函数。展示了另外三种情况:(1)稳态脉冲ASL,(2)磁共振指纹识别ASL,以及(3)平衡稳态自由进动和扰相梯度回波序列。

结果

发现所提出的近似方法对于脉冲标记和伪连续标记具有任意精度。与通用动力学模型相比,对于3 ms和35 ms的时间步长,脉冲标记/伪连续标记的近似误差分别小于0.002%(<0.002%)和小于0.05%(<0.05%)。所提出的近似方法与稳态脉冲ASL和磁共振指纹识别ASL的定制信号表达式匹配良好。血流、T以及磁化传递的同时建模模拟显示稳态平衡稳态自由进动和扰相梯度信号增加。

结论

我们展示了“布洛赫 - 麦康奈尔流”方程的一种数值近似方法,该方法能够对脉冲ASL和伪连续标记信号进行与通用动力学模型相当的任意精确建模。这在定量ASL的实验设计中增加了灵活性。

相似文献

1
Numerical approximation to the general kinetic model for ASL quantification.
Magn Reson Med. 2020 Nov;84(5):2846-2857. doi: 10.1002/mrm.28304. Epub 2020 May 4.
2
Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI.
Magn Reson Med. 2020 Feb;83(2):731-748. doi: 10.1002/mrm.27956. Epub 2019 Sep 12.
3
A perfusion phantom for ASL MRI based on impinging jets.
Magn Reson Med. 2021 Aug;86(2):1145-1158. doi: 10.1002/mrm.28697. Epub 2021 Mar 27.
5
Pseudo continuous arterial spin labeling quantification in anemic subjects with hyperemic cerebral blood flow.
Magn Reson Imaging. 2018 Apr;47:137-146. doi: 10.1016/j.mri.2017.12.011. Epub 2017 Dec 9.
6
An introduction to ASL labeling techniques.
J Magn Reson Imaging. 2014 Jul;40(1):1-10. doi: 10.1002/jmri.24565. Epub 2014 Jan 15.
7
Steady pulsed imaging and labeling scheme for noninvasive perfusion imaging.
Magn Reson Med. 2016 Jan;75(1):238-48. doi: 10.1002/mrm.25641. Epub 2015 Mar 2.
8
Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.
Neuroimage. 2015 Nov 1;121:205-16. doi: 10.1016/j.neuroimage.2015.07.018. Epub 2015 Jul 11.
9
Estimation of perfusion properties with MR Fingerprinting Arterial Spin Labeling.
Magn Reson Imaging. 2018 Jul;50:68-77. doi: 10.1016/j.mri.2018.03.011. Epub 2018 Mar 12.
10
Simultaneous acquisition of perfusion image and dynamic MR angiography using time-encoded pseudo-continuous ASL.
Magn Reson Med. 2018 May;79(5):2676-2684. doi: 10.1002/mrm.26926. Epub 2017 Sep 14.

引用本文的文献

1
Improved reproducibility for myocardial ASL: Impact of physiological and acquisition parameters.
Magn Reson Med. 2024 Jan;91(1):118-132. doi: 10.1002/mrm.29834. Epub 2023 Sep 5.

本文引用的文献

1
Deep learning-based MR fingerprinting ASL ReconStruction (DeepMARS).
Magn Reson Med. 2020 Aug;84(2):1024-1034. doi: 10.1002/mrm.28166. Epub 2020 Feb 4.
2
Optimizing MRF-ASL scan design for precise quantification of brain hemodynamics using neural network regression.
Magn Reson Med. 2020 Jun;83(6):1979-1991. doi: 10.1002/mrm.28051. Epub 2019 Nov 21.
3
4
Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper.
Nephrol Dial Transplant. 2018 Sep 1;33(suppl_2):ii15-ii21. doi: 10.1093/ndt/gfy180.
5
Estimation of perfusion properties with MR Fingerprinting Arterial Spin Labeling.
Magn Reson Imaging. 2018 Jul;50:68-77. doi: 10.1016/j.mri.2018.03.011. Epub 2018 Mar 12.
6
Extended phase graph formalism for systems with magnetization transfer and exchange.
Magn Reson Med. 2018 Aug;80(2):767-779. doi: 10.1002/mrm.27040. Epub 2017 Dec 15.
7
Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL.
Magn Reson Med. 2017 Nov;78(5):1812-1823. doi: 10.1002/mrm.26587. Epub 2016 Dec 26.
8
Myocardial arterial spin labeling.
J Cardiovasc Magn Reson. 2016 Apr 12;18:22. doi: 10.1186/s12968-016-0235-4.
9
Steady pulsed imaging and labeling scheme for noninvasive perfusion imaging.
Magn Reson Med. 2016 Jan;75(1):238-48. doi: 10.1002/mrm.25641. Epub 2015 Mar 2.
10
A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer.
NMR Biomed. 2015 Feb;28(2):217-30. doi: 10.1002/nbm.3237. Epub 2014 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验