Suppr超能文献

化学交换饱和转移与半固体磁化转移的联合解析解

A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer.

作者信息

Zaiss Moritz, Zu Zhongliang, Xu Junzhong, Schuenke Patrick, Gochberg Daniel F, Gore John C, Ladd Mark E, Bachert Peter

机构信息

Deutsches Krebsforschungszentrum (DKFZ), Medical Physics in Radiology, Heidelberg, Germany.

出版信息

NMR Biomed. 2015 Feb;28(2):217-30. doi: 10.1002/nbm.3237. Epub 2014 Dec 15.

Abstract

Off-resonant RF irradiation in tissue indirectly lowers the water signal by saturation transfer processes: on the one hand, there are selective chemical exchange saturation transfer (CEST) effects originating from exchanging endogenous protons resonating a few parts per million from water; on the other hand, there is the broad semi-solid magnetization transfer (MT) originating from immobile protons associated with the tissue matrix with kilohertz linewidths. Recently it was shown that endogenous CEST contrasts can be strongly affected by the MT background, so corrections are needed to derive accurate estimates of CEST effects. Herein we show that a full analytical solution of the underlying Bloch-McConnell equations for both MT and CEST provides insights into their interaction and suggests a simple means to isolate their effects. The presented analytical solution, based on the eigenspace solution of the Bloch-McConnell equations, extends previous treatments by allowing arbitrary lineshapes for the semi-solid MT effects and simultaneously describing multiple CEST pools in the presence of a large MT pool for arbitrary irradiation. The structure of the model indicates that semi-solid MT and CEST effects basically add up inversely in determining the steady-state Z-spectrum, as previously shown for direct saturation and CEST effects. Implications for existing previous CEST analyses in the presence of a semi-solid MT are studied and discussed. It turns out that, to accurately quantify CEST contrast, a good reference Z-value, the observed longitudinal relaxation rate of water, and the semi-solid MT pool size fraction must all be known.

摘要

组织中的非共振射频照射通过饱和转移过程间接降低水信号

一方面,存在选择性化学交换饱和转移(CEST)效应,其源于与水共振频率相差百万分之几的内源性质子交换;另一方面,存在源于与具有千赫兹线宽的组织基质相关的固定质子的广泛半固体磁化转移(MT)。最近研究表明,内源性CEST对比可受到MT背景的强烈影响,因此需要进行校正以获得CEST效应的准确估计。在此我们表明,针对MT和CEST的基础Bloch-McConnell方程的完整解析解可深入了解它们之间的相互作用,并提出一种分离其效应的简单方法。所提出的解析解基于Bloch-McConnell方程的本征空间解,通过允许半固体MT效应具有任意线形,并同时描述在存在大MT池的情况下任意照射下的多个CEST池,扩展了先前的处理方法。该模型的结构表明,在确定稳态Z谱时,半固体MT和CEST效应基本上呈反向相加,如先前对直接饱和和CEST效应所显示的那样。研究并讨论了在存在半固体MT的情况下对现有先前CEST分析的影响。结果表明,为了准确量化CEST对比,必须知道一个良好的参考Z值、观察到的水纵向弛豫率以及半固体MT池大小分数。

相似文献

1
A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer.
NMR Biomed. 2015 Feb;28(2):217-30. doi: 10.1002/nbm.3237. Epub 2014 Dec 15.
6
CEST imaging of fast exchanging amine pools with corrections for competing effects at 9.4 T.
NMR Biomed. 2017 Jul;30(7). doi: 10.1002/nbm.3715. Epub 2017 Mar 8.
7
Analytical solution of the Bloch-McConnell equations for steady-state CEST Z-spectra.
Magn Reson Imaging. 2024 Jun;109:74-82. doi: 10.1016/j.mri.2024.02.015. Epub 2024 Feb 29.

引用本文的文献

2
Quantitative molecular imaging using deep magnetic resonance fingerprinting.
Nat Protoc. 2025 Apr 1. doi: 10.1038/s41596-025-01152-w.
3
Asymmetry analysis of nuclear Overhauser enhancement effect at -1.6 ppm in ischemic stroke.
Med Phys. 2025 May;52(5):2922-2937. doi: 10.1002/mp.17677. Epub 2025 Feb 11.
5
In vivo assessment of the influence of general anesthetics on transmembrane water cycling in the brain.
J Cereb Blood Flow Metab. 2025 May;45(5):977-988. doi: 10.1177/0271678X241309783. Epub 2024 Dec 24.
6
Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange .
ACS Nano. 2024 Dec 17;18(50):33775-33791. doi: 10.1021/acsnano.4c05923. Epub 2024 Dec 6.
7
Toward quantitative CEST imaging of glutamate in the mouse brain using a multi-pool exchange model calibrated by H-MRS.
Magn Reson Med. 2025 Mar;93(3):1394-1410. doi: 10.1002/mrm.30353. Epub 2024 Oct 24.
9
Analytical solution of the Bloch-McConnell equations for steady-state CEST Z-spectra.
Magn Reson Imaging. 2024 Jun;109:74-82. doi: 10.1016/j.mri.2024.02.015. Epub 2024 Feb 29.
10
Machine learning-based amide proton transfer imaging using partially synthetic training data.
Magn Reson Med. 2024 May;91(5):1908-1922. doi: 10.1002/mrm.29970. Epub 2023 Dec 14.

本文引用的文献

1
In vivo chemical exchange saturation transfer imaging of creatine (CrCEST) in skeletal muscle at 3T.
J Magn Reson Imaging. 2014 Sep;40(3):596-602. doi: 10.1002/jmri.24412. Epub 2013 Oct 31.
2
Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla.
Neuroimage. 2014 Oct 1;99:256-68. doi: 10.1016/j.neuroimage.2014.05.036. Epub 2014 May 20.
4
On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T.
NMR Biomed. 2014 Apr;27(4):406-16. doi: 10.1002/nbm.3075. Epub 2014 Jan 29.
6
Quantitative magnetization transfer imaging of rodent glioma using selective inversion recovery.
NMR Biomed. 2014 Mar;27(3):253-60. doi: 10.1002/nbm.3058. Epub 2013 Dec 13.
7
Magnetization transfer in lamellar liquid crystals.
Magn Reson Med. 2014 Nov;72(5):1427-34. doi: 10.1002/mrm.25034. Epub 2013 Nov 20.
9
In vivo imaging of glucose uptake and metabolism in tumors.
Nat Med. 2013 Aug;19(8):1067-72. doi: 10.1038/nm.3252. Epub 2013 Jul 7.
10
Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T.
Magn Reson Med. 2014 May;71(5):1841-53. doi: 10.1002/mrm.24822. Epub 2013 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验