Bi Xiaoman, Wu Ziang, Zhang Tao, An Cunbin, Xu Ye, Ma Kangqiao, Li Sunsun, Zhang Shaoqing, Yao Huifeng, Xu Bowei, Woo Han Young, Cao Shaokui, Hou Jianhui
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
ACS Appl Mater Interfaces. 2020 May 27;12(21):24184-24191. doi: 10.1021/acsami.0c04397. Epub 2020 May 13.
Nonradiative recombination energy loss (Δ) plays a key role in enhancing device efficiencies for polymer solar cells (PSCs). Until now, there is no clear resolution for reducing Δ via molecular design. Herein, we report two conjugated polymers, PBDB-P- and PBDB-P-, which are integrated from benzo[1,2-:4,5-']dithiophene with alkylthio chain substituted at para- or meta-position on pendent benzene and benzo[1,2-:4,5-']dithiophene-4,8-dione. Both the polymers have different temperature-dependent aggregation properties but similar molecular energy levels. When BO-4Cl was used as an acceptor to fabricate PSCs, the device of PBDB-P-:BO-4Cl displayed a maximal power conversion efficiency (PCE) of 13.83%, while the best device of PBDB-P-:BO-4Cl exhibited a higher PCE of 14.12%. The close s and fill factors in both PSCs are attributed to their formation of effective nanoscale phase separation as confirmed by atomic force microscopy measurements. We find that the PBDB-P--based device has 1 order of magnitude higher electroluminescence quantum efficiency (EQE) than in the PBDB-P--based one, which could arise from the relatively weak aggregation in the PBDB-P--based film. Thus, the PBDB-P--based device has a remarkably enhanced of 0.86 V in contrast to 0.80 V in the PBDB-P--based device. This study offers a feasible structural optimization way on the alkylthio side chain substitute position on the conjugated polymer to enhance by reducing nonradiative recombination energy loss in the resulting PSCs.
非辐射复合能量损失(Δ)在提高聚合物太阳能电池(PSC)的器件效率方面起着关键作用。到目前为止,通过分子设计降低Δ尚无明确的解决方案。在此,我们报道了两种共轭聚合物PBDB-P-和PBDB-P-,它们由苯并[1,2-:4,5-']二噻吩与在侧链苯的对位或间位取代的烷硫基链以及苯并[1,2-:4,5-']二噻吩-4,8-二酮整合而成。这两种聚合物具有不同的温度依赖性聚集特性,但分子能级相似。当使用BO-4Cl作为受体来制备PSC时,PBDB-P-:BO-4Cl器件的最大功率转换效率(PCE)为13.83%,而PBDB-P-:BO-4Cl的最佳器件表现出更高的PCE,为14.12%。两种PSC中相近的短路电流密度和填充因子归因于原子力显微镜测量所证实的有效纳米级相分离的形成。我们发现基于PBDB-P-的器件的电致发光量子效率(EQE)比基于PBDB-P-的器件高1个数量级,这可能源于基于PBDB-P-的薄膜中相对较弱的聚集。因此,基于PBDB-P-的器件的开路电压显著提高到0.86 V,而基于PBDB-P-的器件为0.80 V。这项研究提供了一种可行的结构优化方法,即对共轭聚合物上的烷硫基侧链取代位置进行优化,以通过减少所得PSC中的非辐射复合能量损失来提高开路电压。