Delluva Alexander A, Dudoff Jessica, Teeter Glenn, Holewinski Adam
Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States.
Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States.
ACS Appl Mater Interfaces. 2020 Jun 3;12(22):24992-24999. doi: 10.1021/acsami.0c03519. Epub 2020 May 18.
Solid-state lithium-ion batteries are a hopeful successor to traditional Li-ion cells that use liquid electrolytes. While a growing body of work has characterized the interfaces between various solid electrolytes and the lithium metal, interfaces with common cathode intercalation compounds are comparatively less understood. In this contribution, the influence of polarization and temperature on interfacial stability between LiMnO (LMO) and LiLaZrO (LLZO) are investigated. Sputtered thin-film LMO electrodes are utilized to permit high-capacity cycling while retaining a large ratio of interfacial area to electrode bulk. Electrochemical impedance spectroscopy (EIS) is compared across a set of full (LMO|LLZO|Li) and symmetric (LMO|LLZO|LMO, Li|LLZO|Li, and Au|LLZO|Au) cells to delineate impedance features that are specific to the evolution of the cathode interface. Additional X-ray photoelectron spectroscopy (XPS) provides evidence of a limited interfacial reaction between LMO and LLZO that coincides with an increase in the impedance of the LMO-LLZO interface.
固态锂离子电池有望成为使用液体电解质的传统锂离子电池的继任者。虽然越来越多的研究工作已经对各种固体电解质与锂金属之间的界面进行了表征,但与常见阴极插层化合物的界面相对来说了解较少。在本论文中,研究了极化和温度对LiMnO(LMO)和LiLaZrO(LLZO)之间界面稳定性的影响。使用溅射薄膜LMO电极以实现高容量循环,同时保持较大的界面面积与电极体积比。在一组全电池(LMO|LLZO|Li)和对称电池(LMO|LLZO|LMO、Li|LLZO|Li和Au|LLZO|Au)上比较电化学阻抗谱(EIS),以描绘特定于阴极界面演变的阻抗特征。额外的X射线光电子能谱(XPS)提供了LMO和LLZO之间有限界面反应的证据,这与LMO-LLZO界面阻抗的增加相吻合。