Suppr超能文献

基于自适应 3D 模型的表情合成与姿态正面化。

Adaptive 3D Model-Based Facial Expression Synthesis and Pose Frontalization.

机构信息

Center for Imaging Media Research, Korea Institute of Science and Technology, Seoul 02792, Korea.

Department of Smart IT, Hanyang Women's University, Seoul 04763, Korea.

出版信息

Sensors (Basel). 2020 May 1;20(9):2578. doi: 10.3390/s20092578.

Abstract

Facial expressions are one of the important non-verbal ways used to understand human emotions during communication. Thus, acquiring and reproducing facial expressions is helpful in analyzing human emotional states. However, owing to complex and subtle facial muscle movements, facial expression modeling from images with face poses is difficult to achieve. To handle this issue, we present a method for acquiring facial expressions from a non-frontal single photograph using a 3D-aided approach. In addition, we propose a contour-fitting method that improves the modeling accuracy by automatically rearranging 3D contour landmarks corresponding to fixed 2D image landmarks. The acquired facial expression input can be parametrically manipulated to create various facial expressions through a blendshape or expression transfer based on the FACS (Facial Action Coding System). To achieve a realistic facial expression synthesis, we propose an exemplar-texture wrinkle synthesis method that extracts and synthesizes appropriate expression wrinkles according to the target expression. To do so, we constructed a wrinkle table of various facial expressions from 400 people. As one of the applications, we proved that the expression-pose synthesis method is suitable for expression-invariant face recognition through a quantitative evaluation, and showed the effectiveness based on a qualitative evaluation. We expect our system to be a benefit to various fields such as face recognition, HCI, and data augmentation for deep learning.

摘要

面部表情是人类在交流中理解情感的重要非言语方式之一。因此,获取和再现面部表情有助于分析人类的情绪状态。然而,由于面部肌肉运动复杂且微妙,因此很难从具有面部姿势的图像中对面部表情进行建模。为了解决这个问题,我们提出了一种使用 3D 辅助方法从非正面单张照片中获取面部表情的方法。此外,我们提出了一种轮廓拟合方法,通过自动重新排列对应于固定 2D 图像标记的 3D 轮廓标记来提高建模精度。通过基于 FACS(面部动作编码系统)的混合形状或表情传递,可以对获取的面部表情输入进行参数化操作,以创建各种面部表情。为了实现逼真的面部表情合成,我们提出了一种范例-纹理皱纹合成方法,根据目标表情提取和合成适当的表情皱纹。为此,我们从 400 个人中构建了一个各种面部表情的皱纹表。作为应用之一,我们通过定量评估证明了表情-姿势合成方法适用于表情不变的人脸识别,并通过定性评估展示了其有效性。我们希望我们的系统能够有益于人脸识别、HCI 和深度学习的数据增强等各个领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d5e/7248866/c1602fef8d8b/sensors-20-02578-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验