Suppr超能文献

用于神经精神障碍患者面部表情动态分析的自动化面部动作编码系统。

Automated Facial Action Coding System for dynamic analysis of facial expressions in neuropsychiatric disorders.

机构信息

Department of Radiology, Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

J Neurosci Methods. 2011 Sep 15;200(2):237-56. doi: 10.1016/j.jneumeth.2011.06.023. Epub 2011 Jun 29.

Abstract

Facial expression is widely used to evaluate emotional impairment in neuropsychiatric disorders. Ekman and Friesen's Facial Action Coding System (FACS) encodes movements of individual facial muscles from distinct momentary changes in facial appearance. Unlike facial expression ratings based on categorization of expressions into prototypical emotions (happiness, sadness, anger, fear, disgust, etc.), FACS can encode ambiguous and subtle expressions, and therefore is potentially more suitable for analyzing the small differences in facial affect. However, FACS rating requires extensive training, and is time consuming and subjective thus prone to bias. To overcome these limitations, we developed an automated FACS based on advanced computer science technology. The system automatically tracks faces in a video, extracts geometric and texture features, and produces temporal profiles of each facial muscle movement. These profiles are quantified to compute frequencies of single and combined Action Units (AUs) in videos, and they can facilitate a statistical study of large populations in disorders known to impact facial expression. We derived quantitative measures of flat and inappropriate facial affect automatically from temporal AU profiles. Applicability of the automated FACS was illustrated in a pilot study, by applying it to data of videos from eight schizophrenia patients and controls. We created temporal AU profiles that provided rich information on the dynamics of facial muscle movements for each subject. The quantitative measures of flatness and inappropriateness showed clear differences between patients and the controls, highlighting their potential in automatic and objective quantification of symptom severity.

摘要

面部表情广泛用于评估神经精神障碍中的情绪障碍。Ekman 和 Friesen 的面部动作编码系统 (FACS) 从面部外观的瞬时变化中对个体面部肌肉的运动进行编码。与基于表情分类为典型情绪(如快乐、悲伤、愤怒、恐惧、厌恶等)的面部表情评分不同,FACS 可以编码模糊和微妙的表情,因此更适合分析面部情感的微小差异。然而,FACS 评分需要广泛的培训,并且耗时且主观,因此容易出现偏差。为了克服这些限制,我们开发了一种基于先进计算机科学技术的自动化 FACS。该系统自动跟踪视频中的人脸,提取几何和纹理特征,并生成每个面部肌肉运动的时间轮廓。这些轮廓被量化,以计算视频中单个和组合动作单元 (AU) 的频率,它们可以促进对已知影响面部表情的疾病中大量人群的统计研究。我们从时间 AU 轮廓中自动推导出扁平且不适当的面部表情的定量指标。自动化 FACS 的适用性在一项试点研究中得到了说明,我们将其应用于来自 8 名精神分裂症患者和对照组的视频数据。我们为每个受试者创建了提供面部肌肉运动动态丰富信息的时间 AU 轮廓。平坦度和不适度的定量指标在患者和对照组之间存在明显差异,突出了它们在自动和客观量化症状严重程度方面的潜力。

相似文献

1
Automated Facial Action Coding System for dynamic analysis of facial expressions in neuropsychiatric disorders.
J Neurosci Methods. 2011 Sep 15;200(2):237-56. doi: 10.1016/j.jneumeth.2011.06.023. Epub 2011 Jun 29.
2
Automated video-based facial expression analysis of neuropsychiatric disorders.
J Neurosci Methods. 2008 Feb 15;168(1):224-38. doi: 10.1016/j.jneumeth.2007.09.030. Epub 2007 Oct 5.
4
The voluntary control of facial action units in adults.
Emotion. 2010 Apr;10(2):266-71. doi: 10.1037/a0017748.
5
Dynamic evoked facial expressions of emotions in schizophrenia.
Schizophr Res. 2008 Oct;105(1-3):30-9. doi: 10.1016/j.schres.2008.05.030. Epub 2008 Sep 14.
6
Recognition and discrimination of prototypical dynamic expressions of pain and emotions.
Pain. 2008 Mar;135(1-2):55-64. doi: 10.1016/j.pain.2007.05.008. Epub 2007 Jun 20.
7
Static posed and evoked facial expressions of emotions in schizophrenia.
Schizophr Res. 2008 Oct;105(1-3):49-60. doi: 10.1016/j.schres.2008.05.010. Epub 2008 Sep 13.
8
What's in a face: Automatic facial coding of untrained study participants compared to standardized inventories.
PLoS One. 2022 Mar 3;17(3):e0263863. doi: 10.1371/journal.pone.0263863. eCollection 2022.
9
Spontaneous and posed facial expression in Parkinson's disease.
J Int Neuropsychol Soc. 1996 Sep;2(5):383-91. doi: 10.1017/s1355617700001454.
10
Fully automatic recognition of the temporal phases of facial actions.
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):28-43. doi: 10.1109/TSMCB.2011.2163710. Epub 2011 Sep 15.

引用本文的文献

2
Automated analysis of emotional expressions in dogs based on geometric morphometrics.
Sci Rep. 2025 Sep 2;15(1):32331. doi: 10.1038/s41598-025-15741-y.
4
The portrait of Dorian Gray: spontaneous expression of happiness is an invariant kinematic marker.
Front Psychol. 2025 Jul 24;16:1546418. doi: 10.3389/fpsyg.2025.1546418. eCollection 2025.
5
Dog facial landmarks detection and its applications for facial analysis.
Sci Rep. 2025 Jul 1;15(1):21886. doi: 10.1038/s41598-025-07040-3.
7
Video Assessment to Detect Amyotrophic Lateral Sclerosis.
Digit Biomark. 2024 Aug 29;8(1):171-180. doi: 10.1159/000540547. eCollection 2024 Jan-Dec.
8
Application of Stereo Digital Image Correlation on Facial Expressions Sensing.
Sensors (Basel). 2024 Apr 11;24(8):2450. doi: 10.3390/s24082450.
9
The Emerging Science of Interacting Minds.
Perspect Psychol Sci. 2024 Mar;19(2):355-373. doi: 10.1177/17456916231200177. Epub 2023 Dec 14.

本文引用的文献

1
Recognizing Action Units for Facial Expression Analysis.
IEEE Trans Pattern Anal Mach Intell. 2001 Feb;23(2):97-115. doi: 10.1109/34.908962.
2
A dynamic texture-based approach to recognition of facial actions and their temporal models.
IEEE Trans Pattern Anal Mach Intell. 2010 Nov;32(11):1940-54. doi: 10.1109/TPAMI.2010.50.
3
A unified probabilistic framework for spontaneous facial action modeling and understanding.
IEEE Trans Pattern Anal Mach Intell. 2010 Feb;32(2):258-73. doi: 10.1109/TPAMI.2008.293.
4
Static posed and evoked facial expressions of emotions in schizophrenia.
Schizophr Res. 2008 Oct;105(1-3):49-60. doi: 10.1016/j.schres.2008.05.010. Epub 2008 Sep 13.
5
Automated video-based facial expression analysis of neuropsychiatric disorders.
J Neurosci Methods. 2008 Feb 15;168(1):224-38. doi: 10.1016/j.jneumeth.2007.09.030. Epub 2007 Oct 5.
7
Impact of depression on response to comedy: a dynamic facial coding analysis.
J Abnorm Psychol. 2007 Nov;116(4):804-9. doi: 10.1037/0021-843X.116.4.804.
8
Facial action unit recognition by exploiting their dynamic and semantic relationships.
IEEE Trans Pattern Anal Mach Intell. 2007 Oct;29(10):1683-99. doi: 10.1109/TPAMI.2007.1094.
9
The Facial Expression Coding System (FACES): development, validation, and utility.
Psychol Assess. 2007 Jun;19(2):210-24. doi: 10.1037/1040-3590.19.2.210.
10
Differences between children and adults in the recognition of enjoyment smiles.
Dev Psychol. 2007 May;43(3):796-803. doi: 10.1037/0012-1649.43.3.796.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验