Suppr超能文献

2009年以来空间迷失恒星识别算法综述。

A Survey of Lost-in-Space Star Identification Algorithms since 2009.

作者信息

Rijlaarsdam David, Yous Hamza, Byrne Jonathan, Oddenino Davide, Furano Gianluca, Moloney David

机构信息

Intel Corporation, Intel R&D Ireland Ltd., Collinstown, Collinstown Industrial Park, Co. Kildare, W23CW68 Collinstown, Ireland.

European Space Agency/ESTEC, 1 Keplerlaan 2201AZ, 3067 Noordwijk, The Netherlands.

出版信息

Sensors (Basel). 2020 May 1;20(9):2579. doi: 10.3390/s20092579.

Abstract

The lost-in-space star identification algorithm is able to identify stars without a priori attitude information and is arguably the most critical component of a star sensor system. In this paper, the 2009 survey by Spratling and Mortari is extended and recent lost-in-space star identification algorithms are surveyed. The covered literature is a qualitative representation of the current research in the field. A taxonomy of these algorithms based on their feature extraction method is defined. Furthermore, we show that in current literature the comparison of these algorithms can produce inconsistent conclusions. In order to mitigate these inconsistencies, this paper lists the considerations related to the relative performance evaluation of these algorithms using simulation.

摘要

空间迷失恒星识别算法能够在没有先验姿态信息的情况下识别恒星,可以说是恒星传感器系统中最关键的组件。本文扩展了斯普拉特林和莫塔里2009年的调查,并对近期的空间迷失恒星识别算法进行了综述。所涵盖的文献是该领域当前研究的定性表述。基于其特征提取方法对这些算法进行了分类。此外,我们表明在当前文献中,这些算法的比较可能会得出不一致的结论。为了减轻这些不一致性,本文列出了使用仿真对这些算法进行相对性能评估时的相关考虑因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dda/7248786/a8a649014146/sensors-20-02579-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验