Suppr超能文献

采用纤维缠绕工艺新方法制备高质量聚合物复合框架

Fabrication of High-Quality Polymer Composite Frame by a New Method of Fiber Winding Process.

作者信息

Mlýnek Jaroslav, Petrů Michal, Martinec Tomáš, Koloor Seyed Saeid Rahimian

机构信息

Department of Mathematics, FP, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic.

Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic.

出版信息

Polymers (Basel). 2020 May 2;12(5):1037. doi: 10.3390/polym12051037.

Abstract

Polymer composite frame has been frequently used in the main structural body of vehicles in aerospace, automotive, etc., applications. Manufacturing of complex curved composite frame suffer from the lack of accurate and optimum method of winding process that lead to preparation of uniform fiber arrangement in critical location of the curved frame. This article deals with the fabrication of high-quality polymer composite frame through an optimal winding of textile fibers onto a non-bearing core frame using a fiber-processing head and an industrial robot. The number of winding layers of fibers and their winding angles are determined based on the operational load on the composite structure. Ensuring the correct winding angles and thus also the homogeneity of fibers in each winding layer can be achieved by using an industrial robot and by definition of its suitable off-line trajectory for the production cycle. Determination of an optimal off-line trajectory of the end-effector of a robot (robot-end-effector (REE)) is important especially in the case of complicated 3D shaped frames. The authors developed their own calculation procedure to determine the optimal REE trajectory in the composite manufacturing process. A mathematical model of the winding process, matrix calculus (particularly matrices of rotations and translations) and an optimization differential evolution algorithm are used during calculation of the optimal REE trajectory. Polymer composites with greater resistance to failure damage (especially against physical destruction) can be produced using the above mentioned procedure. The procedure was successfully tested in an experimental composite laboratory. Two practical examples of optimal trajectory calculation are included in the article. The described optimization algorithm of REE trajectory is completely independent of the industrial robot type and robot software tools used and can also be used in other composite manufacturing technologies.

摘要

聚合物复合材料框架已频繁应用于航空航天、汽车等领域车辆的主要结构体中。复杂曲面复合材料框架的制造面临缺乏精确且优化的缠绕工艺方法的问题,这导致在曲面框架的关键位置难以制备均匀的纤维排列。本文探讨了通过使用纤维加工头和工业机器人将纺织纤维以最佳方式缠绕到非承载芯框架上来制造高质量聚合物复合材料框架的方法。纤维的缠绕层数及其缠绕角度是根据复合材料结构上的运行负载来确定的。通过使用工业机器人并为生产周期定义合适的离线轨迹,可以确保正确的缠绕角度,从而保证每个缠绕层中纤维的均匀性。确定机器人末端执行器(REE)的最佳离线轨迹尤为重要,特别是对于复杂的三维形状框架。作者开发了自己的计算程序来确定复合材料制造过程中的最佳REE轨迹。在计算最佳REE轨迹时,使用了缠绕过程的数学模型、矩阵演算(特别是旋转和平移矩阵)以及优化差分进化算法。使用上述方法可以生产出具有更高抗破坏损伤能力(尤其是抗物理破坏能力)的聚合物复合材料。该程序已在复合材料实验实验室中成功测试。本文还包含了两个最佳轨迹计算的实际示例。所描述的REE轨迹优化算法完全独立于所使用的工业机器人类型和机器人软件工具,并且也可用于其他复合材料制造技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c24/7284781/9e32cd1959be/polymers-12-01037-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验