Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL, USA.
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Biomed Eng Online. 2020 May 5;19(1):27. doi: 10.1186/s12938-020-00769-0.
Catheter ablation therapy involving isolation of pulmonary veins (PVs) from the left atrium is performed to terminate atrial fibrillation (AF). Unfortunately, standalone PV isolation procedure has shown to be a suboptimal success with AF continuation or recurrence. One reason, especially in patients with persistent or high-burden paroxysmal AF, is known to be due to the formation of repeating-pattern AF sources with a meandering core inside the atria. However, there is a need for accurate mapping and localization of these sources during catheter ablation.
A novel AF source area probability (ASAP) mapping algorithm was developed and evaluated in 2D and 3D atrial simulated tissues with various arrhythmia scenarios and a retrospective study with three cases of clinical human AF. The ASAP mapping analyzes the electrograms collected from a multipole diagnostic catheter that is commonly used during catheter ablation procedure to intelligently sample the atria and delineate the trajectory path of a meandering repeating-pattern AF source. ASAP starts by placing the diagnostic catheter at an arbitrary location in the atria. It analyzes the recorded bipolar electrograms to build an ASAP map over the atrium anatomy and suggests an optimal location for the subsequent catheter location. ASAP then determines from the constructed ASAP map if an AF source has been delineated. If so, the catheter navigation is stopped and the algorithm provides the area of the AF source. Otherwise, the catheter is navigated to the suggested location, and the process is continued until an AF-source area is delineated.
ASAP delineated the AF source in over 95% of the simulated human AF cases within less than eight catheter placements regardless of the initial catheter placement. The success of ASAP in the clinical AF was confirmed by the ablation outcomes and the electrogram patterns at the delineated area.
Our analysis indicates the potential of the ASAP mapping to provide accurate information about the area of the meandering repeating-pattern AF sources as AF ablation targets for effective AF termination. Our algorithm could improve the success of AF catheter ablation therapy by locating and subsequently targeting patient-specific and repeating-pattern AF sources inside the atria.
导管消融治疗涉及将肺静脉(PVs)从左心房隔离,以终止心房颤动(AF)。不幸的是,孤立的 PV 隔离术在 AF 持续或复发方面显示出不尽如人意的成功率。一个原因,特别是在持续性或高负荷阵发性 AF 患者中,已知是由于在心房内形成具有蜿蜒核心的重复模式 AF 源。然而,在导管消融过程中需要准确地映射和定位这些源。
开发了一种新的 AF 源区域概率(ASAP)映射算法,并在具有各种心律失常情况的 2D 和 3D 心房模拟组织中进行了评估,并对三例临床人类 AF 进行了回顾性研究。ASAP 映射分析从多极诊断导管中收集的电图,该导管通常用于导管消融过程中,以智能地采样心房并描绘蜿蜒重复模式 AF 源的轨迹路径。ASAP 首先将诊断导管放置在心房中的任意位置。它分析记录的双极电图,在心房解剖结构上构建 ASAP 图,并为随后的导管位置建议最佳位置。ASAP 然后根据构建的 ASAP 图确定是否已经描绘了 AF 源。如果是,则停止导管导航,并且算法提供 AF 源的面积。否则,将导管导航到建议的位置,并且该过程继续进行,直到描绘出 AF 源区域。
ASAP 在不到 8 次导管放置的情况下,在超过 95%的模拟人类 AF 病例中描绘了 AF 源,无论初始导管放置如何。ASAP 在临床 AF 中的成功通过消融结果和描绘区域的电图模式得到证实。
我们的分析表明,ASAP 映射具有提供有关蜿蜒重复模式 AF 源区域的准确信息的潜力,作为 AF 消融的靶点,以有效终止 AF。我们的算法可以通过定位和随后针对心房内的特定于患者和重复模式的 AF 源,提高 AF 导管消融治疗的成功率。