School of Chemistry, University of Glasgow, G12 8QQ Glasgow, United Kingdom.
School of Chemistry, University of Glasgow, G12 8QQ Glasgow, United Kingdom
Proc Natl Acad Sci U S A. 2020 May 19;117(20):10699-10705. doi: 10.1073/pnas.1921536117. Epub 2020 May 5.
Here we show how a simple inorganic salt can spontaneously form autocatalytic sets of replicating inorganic molecules that work via molecular recognition based on the {PMo} ≡ [PMoO] Keggin ion, and {Mo} ≡ [HMoM(NO)O(HO)] cluster. These small clusters are able to catalyze their own formation via an autocatalytic network, which subsequently template the assembly of gigantic molybdenum-blue wheel {Mo} ≡ [MoOH(HO)], {Mo} ≡ [MoMoO(CHCOO)(HO)] ball-shaped species containing 154 and 132 molybdenum atoms, and a {PMo}⊂{MoCe} ≡ [HMoMoCeO(HO) (PMoMoO)(CHNOS)] nanostructure. Kinetic investigations revealed key traits of autocatalytic systems including molecular recognition and kinetic saturation. A stochastic model confirms the presence of an autocatalytic network involving molecular recognition and assembly processes, where the larger clusters are the only products stabilized by the cycle, isolated due to a critical transition in the network.
在这里,我们展示了一种简单的无机盐如何能够自发地形成复制无机分子的自动催化体系,这些分子通过基于 {PMo}≡[PMoO] Keggin 离子和 {Mo}≡[HMoM(NO)O(HO)] 簇的分子识别起作用。这些小簇能够通过自动催化网络催化自身的形成,随后模板组装巨大的钼蓝 {Mo}≡[MoOH(HO)]、{Mo}≡[MoMoO(CHCOO)(HO)] 球形物种,其中包含 154 个和 132 个钼原子,以及一个 {PMo}⊂{MoCe}≡[HMoMoCeO(HO)(PMoMoO)(CHNOS)] 纳米结构。动力学研究揭示了自动催化体系的关键特征,包括分子识别和动力学饱和。随机模型证实了存在涉及分子识别和组装过程的自动催化网络,其中较大的簇是唯一由循环稳定的产物,由于网络中的临界转变而被隔离。