Whitehead Institute for Biomedical Research, Cambridge, MA 02142.
Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
Proc Natl Acad Sci U S A. 2020 May 19;117(20):10806-10817. doi: 10.1073/pnas.1920097117. Epub 2020 May 5.
Radiation of the plant pyridoxal 5'-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.
植物吡哆醛 5'-磷酸(PLP)依赖性芳香族 l-氨基酸脱羧酶(AAAD)家族的辐射产生了一系列具有不同底物偏好和催化机制的同工酶。植物 AAAD 催化芳香族 l-氨基酸的脱羧或脱羧依赖性氧化脱氨,分别产生芳香族单胺或芳香族乙醛。这些化合物分别作为几种重要植物天然产物生物合成的关键前体,包括吲哚生物碱、苄基异喹啉生物碱、羟基肉桂酰胺、苯乙醛衍生的花香挥发物和酪氨酸衍生物。在这里,我们展示了四个功能不同的植物 AAAD 同工酶的晶体结构。通过结构和功能分析,我们确定了底物结合口袋的可变结构特征,这些特征是植物 AAAD 中对吲哚、苯或羟基苯氨基酸的底物选择性的分歧进化的基础。此外,我们描述了 AAAD 同工酶中两种独立出现的机制类别的突变,导致衍生的醛合酶活性的趋同进化。应用从这项研究中获得的知识,我们成功地在酵母中设计了缩短的苄基异喹啉生物碱途径来生产(S)-去甲克劳定。这项工作突出了 AAAD 折叠的灵活性,它只需要几个突变就可以改变底物选择性并获得替代的催化机制。