Suppr超能文献

使用监督学习方法制定孕期最受关注的处方药清单。

Using Supervised Learning Methods to Develop a List of Prescription Medications of Greatest Concern during Pregnancy.

作者信息

Ailes Elizabeth C, Zimmerman John, Lind Jennifer N, Fan Fanghui, Shi Kun, Reefhuis Jennita, Broussard Cheryl S, Frey Meghan T, Cragan Janet D, Petersen Emily E, Polen Kara D, Honein Margaret A, Gilboa Suzanne M

机构信息

National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, GA, 30341-3717, USA.

Deloitte Consulting LLP, Atlanta, GA, USA.

出版信息

Matern Child Health J. 2020 Jul;24(7):901-910. doi: 10.1007/s10995-020-02942-2.

Abstract

INTRODUCTION

Women and healthcare providers lack adequate information on medication safety during pregnancy. While resources describing fetal risk are available, information is provided in multiple locations, often with subjective assessments of available data. We developed a list of medications of greatest concern during pregnancy to help healthcare providers counsel reproductive-aged and pregnant women.

METHODS

Prescription drug labels submitted to the U.S. Food and Drug Administration with information in the Teratogen Information System (TERIS) and/or Drugs in Pregnancy and Lactation by Briggs & Freeman were included (N = 1,186 medications; 766 from three data sources, 420 from two). We used two supervised learning methods ('support vector machine' and 'sentiment analysis') to create prediction models based on narrative descriptions of fetal risk. Two models were created per data source. Our final list included medications categorized as 'high' risk in at least four of six models (if three data sources) or three of four models (if two data sources).

RESULTS

We classified 80 prescription medications as being of greatest concern during pregnancy; over half were antineoplastic agents (n = 24), angiotensin converting enzyme inhibitors (n = 10), angiotensin II receptor antagonists (n = 8), and anticonvulsants (n = 7).

DISCUSSION

This evidence-based list could be a useful tool for healthcare providers counseling reproductive-aged and pregnant women about medication use during pregnancy. However, providers and patients may find it helpful to weigh the risks and benefits of any pharmacologic treatment for both pregnant women and the fetus when managing medical conditions before and during pregnancy.

摘要

引言

女性和医疗服务提供者在孕期用药安全方面缺乏足够的信息。虽然有描述胎儿风险的资源,但信息分布在多个地方,且对现有数据的评估往往带有主观性。我们制定了一份孕期最值得关注的药物清单,以帮助医疗服务提供者为育龄期和孕期女性提供咨询。

方法

纳入提交给美国食品药品监督管理局且在致畸物信息系统(TERIS)和/或Briggs & Freeman所著的《孕期及哺乳期用药》中有相关信息的处方药标签(N = 1186种药物;766种来自三个数据源,420种来自两个数据源)。我们使用两种监督学习方法(“支持向量机”和“情感分析”),根据胎儿风险的叙述性描述创建预测模型。每个数据源创建两个模型。我们的最终清单包括在六个模型中的至少四个(如果是三个数据源)或四个模型中的三个(如果是两个数据源)被归类为“高”风险的药物。

结果

我们将80种处方药归类为孕期最值得关注的药物;超过一半是抗肿瘤药(n = 24)、血管紧张素转换酶抑制剂(n = 10)、血管紧张素II受体拮抗剂(n = 8)和抗惊厥药(n = 7)。

讨论

这份基于证据的清单可能是医疗服务提供者为育龄期和孕期女性提供孕期用药咨询的有用工具。然而,在处理孕期前后的医疗状况时,医疗服务提供者和患者可能会发现,权衡任何药物治疗对孕妇和胎儿的风险与益处是有帮助的。

相似文献

10
Balancing act: safe and evidence-based prescribing for women of reproductive age.
Womens Health (Lond). 2012 Jul;8(4):415-25. doi: 10.2217/whe.12.25.

本文引用的文献

8
Initial Description of the Presumed Congenital Zika Syndrome.疑似先天性寨卡综合征的初步描述。
Am J Public Health. 2016 Apr;106(4):598-600. doi: 10.2105/AJPH.2016.303115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验