Milner David S, Ray Luke J, Saxon Emma B, Lambert Carey, Till Rob, Fenton Andrew K, Sockett Renee Elizabeth
Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
Front Microbiol. 2020 Apr 21;11:542. doi: 10.3389/fmicb.2020.00542. eCollection 2020.
The predatory bacterium grows and divides inside the periplasm of Gram-negative bacteria, forming a structure known as a bdelloplast. Cell division of predators inside the dead prey cell is not by binary fission but instead by synchronous division of a single elongated filamentous cell into odd or even numbers of progeny cells. replication and cell division processes are dependent on the finite level of nutrients available from inside the prey bacterium. The filamentous growth and division process of the predator maximizes the number of progeny produced by the finite nutrients in a way that binary fission could not. To learn more about such an unusual growth profile, we studied the role of DivIVA in the growing cell. This protein is well known for its link to polar cell growth and spore formation in Gram-positive bacteria, but little is known about its function in a predatory growth context. We show that DivIVA is expressed in the growing cell and controls cell morphology during filamentous cell division, but not the number of progeny produced. Bacterial Two Hybrid (BTH) analysis shows DivIVA may interact with proteins that respond to metabolic indicators of amino-acid biosynthesis or changes in redox state. Such changes may be relevant signals to the predator, indicating the consumption of prey nutrients within the sealed bdelloplast environment. ParA, a chromosome segregation protein, also contributes to bacterial septation in many species. The genome contains three ParA homologs; we identify a canonical ParAB pair required for predatory cell division and show a BTH interaction between a gene product encoded from the same operon as DivIVA with the canonical ParA. The remaining ParA proteins are both expressed in but are not required for predator cell division. Instead, one of these ParA proteins coordinates gliding motility, changing the frequency at which the cells reverse direction. Our work will prime further studies into how one bacterium can co-ordinate its cell division with the destruction of another bacterium that it dwells within.
这种捕食性细菌在革兰氏阴性菌的周质内生长和分裂,形成一种称为蛭弧体的结构。死猎物细胞内捕食者的细胞分裂不是通过二分裂,而是由单个细长丝状细胞同步分裂为奇数或偶数个后代细胞。复制和细胞分裂过程依赖于猎物细菌内部有限的营养水平。捕食者的丝状生长和分裂过程以二分裂无法实现的方式,使有限营养产生的后代数量最大化。为了更多地了解这种不寻常的生长模式,我们研究了DivIVA在生长中的蛭弧菌细胞中的作用。这种蛋白质因其与革兰氏阳性菌的极性细胞生长和孢子形成有关而广为人知,但在捕食性生长环境中的功能却知之甚少。我们发现DivIVA在生长中的蛭弧菌细胞中表达,并在丝状细胞分裂过程中控制细胞形态,但不控制产生的后代数量。细菌双杂交(BTH)分析表明,DivIVA可能与响应氨基酸生物合成代谢指标或氧化还原状态变化的蛋白质相互作用。这些变化可能是捕食者的相关信号,表明在封闭的蛭弧体内环境中猎物营养的消耗。ParA是一种染色体分离蛋白,在许多物种中也有助于细菌隔膜形成。蛭弧菌基因组包含三个ParA同源物;我们确定了捕食性细胞分裂所需的一个典型ParAB对,并显示与DivIVA来自同一操纵子的基因产物与典型ParA之间存在BTH相互作用。其余的ParA蛋白在蛭弧菌中均有表达,但不是捕食者细胞分裂所必需的。相反,其中一种ParA蛋白协调滑行运动,改变细胞反向的频率。我们的工作将推动进一步研究一种细菌如何与它所寄生的另一种细菌的破坏过程协调其细胞分裂。