Suppr超能文献

lncRNAs 分类器可准确预测胸腺瘤的复发。

lncRNAs classifier to accurately predict the recurrence of thymic epithelial tumors.

机构信息

Department of Thoracic Surgery, Sanya Central Hospital, Sanya, China.

Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Thorac Cancer. 2020 Jul;11(7):1773-1783. doi: 10.1111/1759-7714.13439. Epub 2020 May 6.

Abstract

BACKGROUND

Long non-coding RNAs (lncRNAs), which have little or no ability to encode proteins, have attracted special attention due to their potential role in cancer disease. In this study we aimed to establish a lncRNAs classifier to improve the accuracy of recurrence prediction for thymic epithelial tumors (TETs).

METHODS

TETs RNA sequencing (RNA-seq) data set and the matched clinicopathologic information were downloaded from the Cancer Genome Atlas. Using univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, we developed a lncRNAs classifier related to recurrence. Functional analysis was conducted to investigate the potential biological processes of the lncRNAs target genes. The independent prognostic factors were identified by Cox regression model. Additionally, predictive ability and clinical application of the lncRNAs classifier were assessed, and compared with the Masaoka staging by receiver operating characteristic (ROC) analysis and decision curve analysis (DCA).

RESULTS

Four recurrence-free survival (RFS)-related lncRNAs were identified, and the classifier consisting of the identified four lncRNAs was able to effectively divide the patients into high and low risk subgroups, with an area under curve (AUC) of 0.796 (three-year RFS) and 0.788 (five-year RFS), respectively. Multivariate analysis indicated that the lncRNAs classifier was an independent recurrence risk factor. The AUC of the lncRNAs classifier in predicting RFS was significantly higher than the Masaoka staging system. Decision curve analysis further demonstrated that the lncRNAs classifier had a larger net benefit than the Masaoka staging system.

CONCLUSIONS

A lncRNAs classifier for patients with TETs was an independent risk factor for RFS despite other clinicopathologic variables. It generated more accurate estimations of the recurrence probability when compared to the Masaoka staging system, but additional data is required before it can be used in clinical practice.

摘要

背景

长非编码 RNA(lncRNA)几乎没有或没有编码蛋白质的能力,由于其在癌症疾病中的潜在作用而引起了特别关注。在这项研究中,我们旨在建立一个 lncRNA 分类器,以提高胸腺瘤(TET)复发预测的准确性。

方法

从癌症基因组图谱下载 TETs RNA 测序(RNA-seq)数据集和匹配的临床病理信息。使用单变量 Cox 回归和最小绝对收缩和选择算子(LASSO)分析,我们开发了与复发相关的 lncRNA 分类器。进行功能分析以研究 lncRNA 靶基因的潜在生物学过程。通过 Cox 回归模型确定独立预后因素。此外,通过接受者操作特征(ROC)分析和决策曲线分析(DCA)评估 lncRNA 分类器的预测能力和临床应用,并与 Masaoka 分期进行比较。

结果

确定了 4 个与无复发生存(RFS)相关的 lncRNA,由鉴定出的 4 个 lncRNA 组成的分类器能够有效地将患者分为高风险和低风险亚组,曲线下面积(AUC)分别为 0.796(三年 RFS)和 0.788(五年 RFS)。多变量分析表明,lncRNA 分类器是复发风险的独立因素。lncRNA 分类器预测 RFS 的 AUC 明显高于 Masaoka 分期系统。决策曲线分析进一步表明,lncRNA 分类器的净获益大于 Masaoka 分期系统。

结论

尽管存在其他临床病理变量,但针对 TET 患者的 lncRNA 分类器是 RFS 的独立危险因素。与 Masaoka 分期系统相比,它可以更准确地估计复发概率,但在临床实践中使用之前还需要更多的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aaf/7327696/2d56010a1594/TCA-11-1773-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验