Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata 700 106, India.
Dalton Trans. 2020 May 28;49(20):6790-6800. doi: 10.1039/d0dt01054e. Epub 2020 May 6.
We report the synthesis of MnO flowery nanocomposites consisting of MnO nanoflowers grown over the surface of clay nanomaterials using an easy and green approach. The MnO nanocomposites were explored as a cost-effective nanoadsorbent for mercury removal from aqueous solution and they demonstrated excellent efficiency towards mercury uptake. Monolayer molecular adsorption of Hg(ii) was attained over the surface of the MnO nanocomposites and the experimental data acquired in the kinetic study demonstrated that the Hg(ii) adsorption kinetics proceeded via a pseudo-second-order kinetic model. pH dependent adsorption study revealed that their sorption capacity increases until pH 7.0 and then gradually decreases with increasing pH. Apart from the experimental study, we have provided a mechanistic interpretation to illustrate the mechanism of kinetics and thermodynamics during Hg(ii) adsorption. Theoretical understanding along with experimental results indicates a spontaneous and highly favorable Hg(ii) uptake up to 50 °C, representing endothermicity of the adsorption process and then exothermicity above 50 °C, resulting in reduced sorption capacity. The exceptional adsorption performance of the MnO nanocomposites may be attributed to their negative surfaces, which facilitated the binding of positively charged Hg(ii) ions through electrostatic interaction. Hence, MnO nanocomposites proved to be an effective and inexpensive nanoadsorbent for the removal of Hg(ii) from aqueous solution and may hold a promise for wastewater treatment.
我们报告了一种使用简单环保方法合成的由 MnO 纳米花生长在粘土纳米材料表面上的 MnO 花状纳米复合材料。将 MnO 纳米复合材料作为从水溶液中去除汞的经济型纳米吸附剂进行了探索,它们对汞的去除表现出了优异的效率。单层分子吸附 Hg(ii)在 MnO 纳米复合材料的表面上实现,动力学研究中获得的实验数据表明,Hg(ii)吸附动力学通过准二级动力学模型进行。pH 依赖吸附研究表明,它们的吸附能力在 pH 7.0 之前增加,然后随着 pH 的增加逐渐降低。除了实验研究,我们还提供了一种机制解释来说明 Hg(ii)吸附过程中的动力学和热力学机制。理论理解和实验结果表明,Hg(ii)的吸附是自发的且非常有利的,直到 50°C,这代表了吸附过程的吸热性,然后在 50°C 以上是放热的,导致吸附能力降低。MnO 纳米复合材料的优异吸附性能可能归因于其负表面,这通过静电相互作用促进了带正电荷的 Hg(ii)离子的结合。因此,MnO 纳米复合材料被证明是一种从水溶液中去除 Hg(ii)的有效且廉价的纳米吸附剂,并且可能为废水处理带来希望。