Irfan Rana Muhammad, Wang Taotao, Jiang Daochuan, Yue Qiudi, Zhang Lei, Cao Hongyun, Pan Yang, Du Pingwu
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, P. R. China.
National Synchrotron Radiation Laboratory, University of Science and Technology of China, 443 Huangshan Rd, Hefei, Anhui Province, 230029, P. R. China.
Angew Chem Int Ed Engl. 2020 Aug 24;59(35):14818-14824. doi: 10.1002/anie.202002757. Epub 2020 Jun 15.
The catalytic decomposition of formic acid to generate syngas (a mixture of H and CO) is a highly valuable strategy for energy conversion. Syngas can be used directly in internal combustion engines or can be converted to liquid fuels, meeting future energy challenges in a sustainable manner. Herein, we report the use of homogeneous molecular iron catalysts combined with a CdS nanorods (NRs) semiconductor to construct a highly efficient photocatalytic system for direct conversion of formic acid to syngas at room temperature and atmospheric pressure. Under optimal conditions, the photocatalytic system presents an activity of 150 mmol g h towards H , and an apparent quantum yield (AQY) of 16.8 %, making it among the most active noble-metal-free photocatalytic systems for H evolution from formic acid under visible light. Meanwhile, these iron-based molecular catalysts also demonstrate remarkable enhancement in CO evolution with robust stability. The mechanistic role of the molecular catalyst is further investigated by using cyclic voltammetry, which suggests the formation of Fe species as the key step in the catalytic conversion of formic acid to syngas.
甲酸催化分解生成合成气(H₂和CO的混合物)是一种极具价值的能量转换策略。合成气可直接用于内燃机,或转化为液体燃料,以可持续的方式应对未来的能源挑战。在此,我们报道了使用均相分子铁催化剂与CdS纳米棒(NRs)半导体相结合,构建了一种高效的光催化体系,用于在室温和大气压下将甲酸直接转化为合成气。在最佳条件下,该光催化体系对H₂的活性为150 mmol g⁻¹ h⁻¹,表观量子产率(AQY)为16.8 %,使其成为可见光下从甲酸制氢最具活性的无贵金属光催化体系之一。同时,这些铁基分子催化剂在CO生成方面也表现出显著增强且稳定性良好。通过循环伏安法进一步研究了分子催化剂的作用机制,结果表明Fe物种的形成是甲酸催化转化为合成气的关键步骤。