一个 microRNA 标志物可识别胰腺导管腺癌患者发生淋巴结转移的风险。

A MicroRNA Signature Identifies Pancreatic Ductal Adenocarcinoma Patients at Risk for Lymph Node Metastases.

机构信息

Center for Gastrointestinal Research, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas; Department of Surgery, Nara Medical University, Nara, Japan; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California.

Department of Surgery, Nara Medical University, Nara, Japan.

出版信息

Gastroenterology. 2020 Aug;159(2):562-574. doi: 10.1053/j.gastro.2020.04.057. Epub 2020 May 4.

Abstract

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) frequently metastasize to the lymph nodes; strategies are needed to identify patients at highest risk for lymph node metastases. We performed genome-wide expression profile analyses of PDAC specimens, collected during surgery or endoscopic ultrasound-guided fine-need aspiration (EUS-FNA), to identify a microRNA (miRNA) signature associated with metastasis to lymph nodes.

METHODS

For biomarker discovery, we analyzed miRNA expression profiles of primary pancreatic tumors from 3 public data sets (The Cancer Genome Atlas, GSE24279, and GSE32688). We then analyzed 157 PDAC specimens (83 from patients with lymph node metastases and 74 without) from Japan, collected from 2001 through 2017, for the training cohort and 107 PDAC specimens (63 from patients with lymph node metastases and 44 without) from a different medical center in Japan, from 2002 through 2016, for the validation cohort. We also analyzed samples collected by EUS-FNA before surgery from 47 patients (22 patients with lymph node metastases and 25 without; 17 for the training cohort and 30 from the validation cohort) and 62 specimens before any treatment from patients who received neoadjuvant chemotherapy (9 patients with lymph node metastasis and 53 without) for additional validation. Multivariate logistic regression analyses were used to evaluate the statistical differences in miRNA expression between patients with vs without metastases.

RESULTS

We identified an miRNA expression pattern associated with diagnosis of PDAC metastasis to lymph nodes. Using logistic regression analysis, we optimized and trained a 6-miRNA risk prediction model for the training cohort; this model discriminated patients with vs without lymph node metastases with an area under the curve (AUC) of 0.84 (95% confidence interval [CI], 0.77-0.89). In the validation cohort, the model identified patients with vs without lymph node metastases with an AUC of 0.73 (95% CI, 0.64-0.81). In EUS-FNA biopsy samples, the model identified patients with vs without lymph node metastases with an AUC of 0.78 (95% CI, 0.63-0.89). The miRNA expression pattern was an independent predictor of PDAC metastasis to lymph nodes in the validation cohort (odds ratio, 17.05; 95% CI, 2.43-119.57) and in the EUS-FNA cohort (95% CI, 0.65-0.87).

CONCLUSIONS

Using data and tumor samples from 3 independent cohorts, we identified an miRNA signature that identifies patients at risk for PDAC metastasis to lymph nodes. The signature has similar levels of accuracy in the analysis of resected tumor specimens and EUS-FNA biopsy specimens. This model might be used to select treatment and management strategies for patients with PDAC.

摘要

背景与目的

胰腺导管腺癌(PDAC)常转移至淋巴结;因此需要寻找策略来识别转移至淋巴结风险最高的患者。我们对手术或内镜超声引导下细针抽吸(EUS-FNA)获取的 PDAC 标本进行全基因组表达谱分析,以确定与淋巴结转移相关的 microRNA(miRNA)特征。

方法

为了进行生物标志物发现,我们分析了来自 3 个公共数据集(癌症基因组图谱、GSE24279 和 GSE32688)的原发性胰腺肿瘤 miRNA 表达谱。然后,我们分析了来自日本的 157 个 PDAC 标本(83 个有淋巴结转移,74 个无淋巴结转移)作为训练队列,分析了来自日本另一家医疗中心的 107 个 PDAC 标本(63 个有淋巴结转移,44 个无淋巴结转移)作为验证队列。我们还分析了来自日本 47 例患者(22 例有淋巴结转移,25 例无淋巴结转移;17 例来自训练队列,23 例来自验证队列)术前 EUS-FNA 样本,以及来自接受新辅助化疗的 62 例患者(9 例有淋巴结转移,53 例无淋巴结转移)的未经任何治疗的样本,用于进一步验证。使用多变量逻辑回归分析评估有与无转移患者之间 miRNA 表达的统计学差异。

结果

我们确定了一种与 PDAC 淋巴结转移诊断相关的 miRNA 表达模式。使用逻辑回归分析,我们对训练队列优化并训练了一个 6-miRNA 风险预测模型;该模型区分有与无淋巴结转移患者的曲线下面积(AUC)为 0.84(95%置信区间 [CI],0.77-0.89)。在验证队列中,该模型区分有与无淋巴结转移患者的 AUC 为 0.73(95%CI,0.64-0.81)。在 EUS-FNA 活检样本中,该模型区分有与无淋巴结转移患者的 AUC 为 0.78(95%CI,0.63-0.89)。miRNA 表达模式是验证队列(优势比,17.05;95%CI,2.43-119.57)和 EUS-FNA 队列(95%CI,0.65-0.87)中 PDAC 淋巴结转移的独立预测因子。

结论

我们使用来自 3 个独立队列的数据和肿瘤样本,确定了一种 miRNA 特征,可以识别 PDAC 转移至淋巴结的风险患者。该特征在分析切除肿瘤标本和 EUS-FNA 活检标本时具有相似的准确性。该模型可用于选择 PDAC 患者的治疗和管理策略。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索