Suppr超能文献

高维牛顿迭代的解析正则性与随机配置

Analytic regularity and stochastic collocation of high-dimensional Newton iterates.

作者信息

Castrillón-Candás Julio E, Kon Mark

机构信息

Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston MA 02215.

出版信息

Adv Comput Math. 2020 Mar;46(3). doi: 10.1007/s10444-020-09791-1. Epub 2020 May 4.

Abstract

In this paper we introduce concepts from uncertainty quantification (UQ) and numerical analysis for the efficient evaluation of stochastic high dimensional Newton iterates. In particular, we develop complex analytic regularity theory of the solution with respect to the random variables. This justifies the application of sparse grids for the computation of statistical measures. Convergence rates are derived and are shown to be subexponential or algebraic with respect to the number of realizations of random perturbations. Due the accuracy of the method, sparse grids are well suited for computing low probability events with high confidence. We apply our method to the power flow problem. Numerical experiments on the non-trivial 39 bus New England power system model with large stochastic loads are consistent with the theoretical convergence rates. Moreover, compared to the Monte Carlo method our approach is at least 10 times faster for the same accuracy.

摘要

在本文中,我们引入不确定性量化(UQ)和数值分析的概念,以有效评估随机高维牛顿迭代。特别是,我们针对随机变量建立了解的复解析正则性理论。这证明了稀疏网格在统计量计算中的应用合理性。推导了收敛速率,并表明其相对于随机扰动实现次数是亚指数或代数的。由于该方法的准确性,稀疏网格非常适合于以高置信度计算低概率事件。我们将我们的方法应用于潮流问题。在具有大随机负荷的非平凡39节点新英格兰电力系统模型上的数值实验与理论收敛速率一致。此外,与蒙特卡罗方法相比,在相同精度下我们的方法至少快10倍。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验