Suppr超能文献

能低到何种程度?低电荷量纳米乳液表面的分子细节。

How Low Can You Go? Molecular Details of Low-Charge Nanoemulsion Surfaces.

机构信息

Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States.

出版信息

J Phys Chem B. 2020 May 21;124(20):4234-4245. doi: 10.1021/acs.jpcb.0c03293. Epub 2020 May 7.

Abstract

Negative charge accumulation at aqueous-hydrophobic interfaces and its pH-dependent behavior are routinely ascribed to special adsorption properties of hydroxide ions. Mounting experimental and computational evidence, however, indicates that this negative charge accumulation is the result of surface-active impurities. If true, these impurities would obfuscate our fundamental understanding of the molecular structure and bonding environment at aqueous-hydrophobic interfaces. In this work, we describe the preparation and characterization of bare low-charge nanoemulsions (LCNEs), nanosized droplets of oil-absent emulsifiers. Electrophoretic mobility measurements of LCNE droplets in varying pH environments suggest that trace surface-adsorbed impurities are contributing to the lingering negative surface charge that leads to their marginal stability. We then use vibrational sum-frequency scattering spectroscopy to support this claim and to study the molecular structure and bonding environment of the interfacial aqueous and hydrophobic phases on both the LCNE surface and the surface of nanoemulsions with increasing amounts of adsorbed surfactants. For LCNE samples, our results show that interfacial water bonds more strongly to the oil phase on the droplet surface compared to similar planar interfaces. Interfacial oil molecules are found to orient mostly parallel to the bare droplet surface and reorganize upon surfactant adsorption. In summation, the results reported here provide a new look at the molecular structure and bonding of bare nanoemulsion surfaces and contribute to our evolving understanding of bare aqueous-hydrophobic interfaces.

摘要

在水-疏水环境中,负电荷的积累及其对 pH 的依赖性通常归因于氢氧根离子的特殊吸附特性。然而,越来越多的实验和计算证据表明,这种负电荷的积累是表面活性杂质的结果。如果这是真的,这些杂质将混淆我们对水-疏水性界面的分子结构和键合环境的基本理解。在这项工作中,我们描述了制备和表征裸低电荷纳米乳液(LCNE)的方法,即不含油的乳化剂的纳米尺寸液滴。在不同 pH 环境下对 LCNE 液滴的电泳迁移率测量表明,痕量表面吸附杂质是导致其边缘稳定性的持久负表面电荷的原因。然后,我们使用振动和频散射光谱来支持这一说法,并研究界面水相和疏水性相的分子结构和键合环境,包括 LCNE 表面以及表面吸附表面活性剂逐渐增加的纳米乳液。对于 LCNE 样品,我们的结果表明,与类似的平面界面相比,界面水与液滴表面上的油相结合得更强。发现界面油分子主要平行于裸液滴表面排列,并在表面活性剂吸附时重新排列。总之,这里报道的结果为裸纳米乳液表面的分子结构和键合提供了新的视角,并有助于我们对裸水-疏水性界面的不断发展的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验