文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用作者权重方案在 JMIR mHealth 和 uHealth 上发表论文的被引频次最高的作者:文献计量分析。

The Most-Cited Authors Who Published Papers in JMIR mHealth and uHealth Using the Authorship-Weighted Scheme: Bibliometric Analysis.

机构信息

Department of Nephrology, Chi Mei Medical Center, Taiwan, Tainan, Taiwan.

Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan.

出版信息

JMIR Mhealth Uhealth. 2020 May 7;8(5):e11567. doi: 10.2196/11567.


DOI:10.2196/11567
PMID:32379053
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7319608/
Abstract

BACKGROUND: Many previous papers have investigated most-cited articles or most productive authors in academics, but few have studied most-cited authors. Two challenges are faced in doing so, one of which is that some different authors will have the same name in the bibliometric data, and the second is that coauthors' contributions are different in the article byline. No study has dealt with the matter of duplicate names in bibliometric data. Although betweenness centrality (BC) is one of the most popular degrees of density in social network analysis (SNA), few have applied the BC algorithm to interpret a network's characteristics. A quantitative scheme must be used for calculating weighted author credits and then applying the metrics in comparison. OBJECTIVE: This study aimed to apply the BC algorithm to examine possible identical names in a network and report the most-cited authors for a journal related to international mobile health (mHealth) research. METHODS: We obtained 676 abstracts from Medline based on the keywords "JMIR mHealth and uHealth" (Journal) on June 30, 2018. The author names, countries/areas, and author-defined keywords were recorded. The BCs were then calculated for the following: (1) the most-cited authors displayed on Google Maps; (2) the geographical distribution of countries/areas for the first author; and (3) the keywords dispersed by BC and related to article topics in comparison on citation indices. Pajek software was used to yield the BC for each entity (or node). Bibliometric indices, including h-, g-, and x-indexes, the mean of core articles on g(Ag)=sum (citations on g-core/publications on g-core), and author impact factor (AIF), were applied. RESULTS: We found that the most-cited author was Sherif M Badawy (from the United States), who had published six articles on JMIR mHealth and uHealth with high bibliometric indices (h=3; AIF=8.47; x=4.68; Ag=5.26). We also found that the two countries with the highest BC were the United States and the United Kingdom and that the two keyword clusters of mHealth and telemedicine earned the highest indices in comparison to other counterparts. All visual representations were successfully displayed on Google Maps. CONCLUSIONS: The most cited authors were selected using the authorship-weighted scheme (AWS), and the keywords of mHealth and telemedicine were more highly cited than other counterparts. The results on Google Maps are novel and unique as knowledge concept maps for understanding the feature of a journal. The research approaches used in this study (ie, BC and AWS) can be applied to other bibliometric analyses in the future.

摘要

背景:许多先前的论文都研究了学术界的高被引文章或高产作者,但很少有研究高被引作者的。在这样做时面临两个挑战,其中一个是在文献计量数据中,一些不同的作者可能具有相同的姓名,第二个是在文章署名中,共同作者的贡献不同。没有研究涉及文献计量数据中重复名称的问题。尽管中介中心度(BC)是社会网络分析(SNA)中最流行的密度度之一,但很少有人将 BC 算法应用于解释网络的特征。必须使用定量方案来计算加权作者信用,并在比较中应用该指标。

目的:本研究旨在应用 BC 算法检查网络中可能存在的相同名称,并报告与国际移动健康(mHealth)研究相关的期刊的高被引作者。

方法:我们于 2018 年 6 月 30 日基于“JMIR mHealth 和 uHealth”(期刊)的关键字从 Medline 中获取了 676 篇摘要。记录了作者姓名、国家/地区和作者定义的关键字。然后计算了以下内容的 BC:(1)在 Google 地图上显示的最受引用的作者;(2)第一作者的国家/地区的地理分布;(3)BC 分散的关键字与引文索引中文章主题相关。Pajek 软件用于为每个实体(或节点)产生 BC。应用了文献计量学指标,包括 h-,g-和 x-指数,g 核心文章的平均值(g 核心上的引文/ g 核心上的出版物)和作者影响因子(AIF)。

结果:我们发现,最受引用的作者是 Sherif M Badawy(来自美国),他在 JMIR mHealth 和 uHealth 上发表了六篇高文献计量学指标的文章(h=3;AIF=8.47;x=4.68;Ag=5.26)。我们还发现,BC 最高的两个国家是美国和英国,与其他对应物相比,mHealth 和远程医疗这两个关键字集群的指标最高。所有的可视化表示都成功地显示在 Google 地图上。

结论:使用作者权重方案(AWS)选择了被引最多的作者,并且 mHealth 和远程医疗的关键字比其他对应物被引更高。Google 地图上的结果是新颖而独特的,因为它们是理解期刊特征的知识概念图。本研究中使用的研究方法(即 BC 和 AWS)可应用于未来的其他文献计量分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/0ff2549064bf/mhealth_v8i5e11567_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/44928f7cd932/mhealth_v8i5e11567_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/4aaecd61b940/mhealth_v8i5e11567_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/670cd3256f4c/mhealth_v8i5e11567_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/4c7b5c22c42a/mhealth_v8i5e11567_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/2be4eb5c6146/mhealth_v8i5e11567_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/0ff2549064bf/mhealth_v8i5e11567_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/44928f7cd932/mhealth_v8i5e11567_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/4aaecd61b940/mhealth_v8i5e11567_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/670cd3256f4c/mhealth_v8i5e11567_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/4c7b5c22c42a/mhealth_v8i5e11567_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/2be4eb5c6146/mhealth_v8i5e11567_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a08/7319608/0ff2549064bf/mhealth_v8i5e11567_fig6.jpg

相似文献

[1]
The Most-Cited Authors Who Published Papers in JMIR mHealth and uHealth Using the Authorship-Weighted Scheme: Bibliometric Analysis.

JMIR Mhealth Uhealth. 2020-5-7

[2]
The 10 top-cited authors who published papers in journal medicine since 2000 using the betweenness centrality to identify unique names: Bibliometric analysis.

Medicine (Baltimore). 2023-6-23

[3]
Whether article types of a scholarly journal are different in cited metrics using cluster analysis of MeSH terms to display: A bibliometric analysis.

Medicine (Baltimore). 2019-10

[4]
Using the Kano model to display the most cited authors and affiliated countries in schizophrenia research.

Schizophr Res. 2020-2

[5]
Exploring the Shift in International Trends in Mobile Health Research From 2000 to 2020: Bibliometric Analysis.

JMIR Mhealth Uhealth. 2021-9-8

[6]
Applying Gini coefficient to evaluate the author research domains associated with the ordering of author names: A bibliometric study.

Medicine (Baltimore). 2018-9

[7]
Whether productive authors using the national health insurance database also achieve higher individual research metrics: A bibliometric study.

Medicine (Baltimore). 2020-1

[8]
Trends and Visibility of "Digital Health" as a Keyword in Articles by JMIR Publications in the New Millennium: Bibliographic-Bibliometric Analysis.

J Med Internet Res. 2019-12-19

[9]
Visualizing Collaboration Characteristics and Topic Burst on International Mobile Health Research: Bibliometric Analysis.

JMIR Mhealth Uhealth. 2018-6-5

[10]
Physical Activity, Sedentary Behavior, and Diet-Related eHealth and mHealth Research: Bibliometric Analysis.

J Med Internet Res. 2018-4-18

引用本文的文献

[1]
Research Progress and Hot Topics in Telerehabilitation for Hip or Knee Arthroplasty.

Orthop Surg. 2025-3

[2]
Mapping the scientific landscape and evolution of the International Journal of Surgery : a scientometric analysis (2004-2024).

Int J Surg. 2025-1-1

[3]
The evolution and mapping trends of mobile health (m-Health): a bibliometric analysis (1997-2023).

Mhealth. 2024-7-23

[4]
Emerging trends and prospects in telerehabilitation for hip fracture: Bibliometric and visualization study.

Digit Health. 2024-5-24

[5]
Artificial Intelligence in Kidney Disease: A Comprehensive Study and Directions for Future Research.

Diagnostics (Basel). 2024-2-12

[6]
Analyzing shifts in age-related macular degeneration research trends since 2014: A bibliometric study with triple-map Sankey diagrams (TMSD).

Medicine (Baltimore). 2024-1-19

[7]
Circle packing charts generated by ChatGPT to identify the characteristics of articles by anesthesiology authors in 2022: Bibliometric analysis.

Medicine (Baltimore). 2023-12-15

[8]
Research trends and hotspots of exercise for people with sarcopenic: A bibliometric analysis.

Medicine (Baltimore). 2023-12-15

[9]
Exploring the top-cited literature in telerehabilitation for joint replacement using the descriptive, diagnostic, predictive, and prescriptive analytics model: A thematic and bibliometric analysis.

Medicine (Baltimore). 2023-12-1

[10]
A modern approach with follower-leading clustering algorithm for visualizing author collaborations and article themes in skin cancer research: A bibliometric analysis.

Medicine (Baltimore). 2023-11-3

本文引用的文献

[1]
Using the Kano model to display the most cited authors and affiliated countries in schizophrenia research.

Schizophr Res. 2020-2

[2]
Choropleth map legend design for visualizing the most influential areas in article citation disparities: A bibliometric study.

Medicine (Baltimore). 2019-10

[3]
Applying Gini coefficient to evaluate the author research domains associated with the ordering of author names: A bibliometric study.

Medicine (Baltimore). 2018-9

[4]
Using Google Maps to display the pattern of coauthor collaborations on the topic of schizophrenia: A systematic review between 1937 and 2017.

Schizophr Res. 2018-9-24

[5]
A novel bibliometric index with a simple geometric interpretation.

PLoS One. 2018-7-10

[6]
Visualizing Collaboration Characteristics and Topic Burst on International Mobile Health Research: Bibliometric Analysis.

JMIR Mhealth Uhealth. 2018-6-5

[7]
Explaining HIV Risk Multiplexity: A Social Network Analysis.

AIDS Behav. 2018-11

[8]
Fair ranking of researchers and research teams.

PLoS One. 2018-4-5

[9]
Influence of Article Type on the Impact Factor of Dermatology Journals.

Actas Dermosifiliogr (Engl Ed). 2018-6

[10]
Understanding the productive author who published papers in medicine using National Health Insurance Database: A systematic review and meta-analysis.

Medicine (Baltimore). 2018-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索