文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

分析 2014 年以来年龄相关性黄斑变性研究趋势的转变:基于三重映射 Sankey 图(TMSD)的文献计量研究。

Analyzing shifts in age-related macular degeneration research trends since 2014: A bibliometric study with triple-map Sankey diagrams (TMSD).

机构信息

Department of Ophthalmology, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan.

Department of Physical Medicine and Rehabilitation, Chiali Chi-Mei Hospital, Tainan, Taiwan.

出版信息

Medicine (Baltimore). 2024 Jan 19;103(3):e36547. doi: 10.1097/MD.0000000000036547.


DOI:10.1097/MD.0000000000036547
PMID:38241545
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10798733/
Abstract

BACKGROUND: Age-related macular degeneration (AMD) is the primary cause of vision impairment in older adults, especially in developed countries. While many articles on AMD exist in the literature, none specifically delve into the trends based on document categories. While bibliometric studies typically use dual-map overlays to highlight new trends, these can become congested and unclear with standard formats (e.g., in CiteSpace software). In this study, we introduce a unique triple-map Sankey diagram (TMSD) to assess the evolution of AMD research. Our objective is to understand the nuances of AMD articles and show the effectiveness of TMSD in determining whether AMD research trends have shifted over the past decade. METHODS: We collected 7465 articles and review pieces related to AMD written by ophthalmologists from the Web of Science core collection, accumulating article metadata from 2014 onward. To delve into the characteristics of these AMD articles, we employed various visualization methods, with a special focus on TMSD to track research evolution. We adopted the descriptive, diagnostic, predictive, and prescriptive analytics (DDPP) model, complemented by the follower-leading clustering algorithm (FLCA) for clustering analysis. This synergistic approach proved efficient in identifying and showcasing research focal points and budding trends using network charts within the DDPP framework. RESULTS: Our findings indicate that: in countries, institutes, years, authors, and journals, the dominant entities were the United States, the University of Bonn in Germany, the year 2021, Dr Jae Hui Kim from South Korea, and the journal "Retina"; in accordance with the TMSD, AMD research trends have not changed significantly since 2014, as the top 4 categories for 3 citing, active, and cited articles have not changed, in sequence (Ophthalmology, Science & Technology - Other Topics, General & Internal Medicine, Pharmacology & Pharmacy). CONCLUSION: The introduced TMSD, which incorporates the FLCA algorithm and features in 3 columns-cited, active, and citing research categories-offers readers clearer insights into research developments compared to the traditional dual-map overlays from CiteSpace software. Such tools are especially valuable for streamlining the visualization of the intricate data often seen in bibliometric studies.

摘要

背景:年龄相关性黄斑变性(AMD)是老年人视力损害的主要原因,尤其是在发达国家。尽管文献中有许多关于 AMD 的文章,但没有一篇专门深入研究基于文献类别的趋势。虽然文献计量学研究通常使用双图叠加来突出新趋势,但在标准格式(例如 CiteSpace 软件)中,这些趋势可能会变得拥挤和不清晰。在这项研究中,我们引入了一种独特的三重映射 Sankey 图(TMSD)来评估 AMD 研究的演变。我们的目的是了解 AMD 文章的细微差别,并展示 TMSD 在确定 AMD 研究趋势是否在过去十年中发生变化方面的有效性。

方法:我们从 Web of Science 核心集收集了 7465 篇由眼科医生撰写的与 AMD 相关的文章和综述,从 2014 年开始积累文章元数据。为了深入研究这些 AMD 文章的特点,我们使用了各种可视化方法,特别关注 TMSD 来跟踪研究的演变。我们采用了描述性、诊断性、预测性和规定性分析(DDPP)模型,并结合追随者领先聚类算法(FLCA)进行聚类分析。这种协同方法在使用 DDPP 框架内的网络图表识别和展示研究重点和新兴趋势方面非常有效。

结果:我们的研究结果表明:在国家、机构、年份、作者和期刊方面,占主导地位的实体是美国、德国波恩大学、2021 年、来自韩国的 Jae Hui Kim 博士和期刊“Retina”;根据 TMSD,自 2014 年以来,AMD 研究趋势没有明显变化,因为引用、活跃和引用文章的前 4 个类别没有变化,依次是(眼科学、科学与技术-其他主题、普通内科、药理学与药学)。

结论:引入的 TMSD 结合了 FLCA 算法和 3 列引用、活跃和引用研究类别的功能,为读者提供了比 CiteSpace 软件传统双图叠加更清晰的研究发展见解。这些工具对于简化文献计量学研究中常见的复杂数据的可视化特别有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/fe36dd5521b9/medi-103-e36547-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/c5e090a5059c/medi-103-e36547-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/720f48ebfb6d/medi-103-e36547-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/7c21f269b883/medi-103-e36547-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/5e8a2b2d84fe/medi-103-e36547-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/04bb974c2902/medi-103-e36547-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/a1035447153e/medi-103-e36547-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/87c774bbab9f/medi-103-e36547-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/aa65b1254641/medi-103-e36547-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/c0b1267e5bb2/medi-103-e36547-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/7418474e60c7/medi-103-e36547-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/fe36dd5521b9/medi-103-e36547-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/c5e090a5059c/medi-103-e36547-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/720f48ebfb6d/medi-103-e36547-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/7c21f269b883/medi-103-e36547-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/5e8a2b2d84fe/medi-103-e36547-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/04bb974c2902/medi-103-e36547-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/a1035447153e/medi-103-e36547-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/87c774bbab9f/medi-103-e36547-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/aa65b1254641/medi-103-e36547-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/c0b1267e5bb2/medi-103-e36547-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/7418474e60c7/medi-103-e36547-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ef/10798733/fe36dd5521b9/medi-103-e36547-g011.jpg

相似文献

[1]
Analyzing shifts in age-related macular degeneration research trends since 2014: A bibliometric study with triple-map Sankey diagrams (TMSD).

Medicine (Baltimore). 2024-1-19

[2]
Analyzing fulminant myocarditis research trends and characteristics using the follower-leading clustering algorithm (FLCA): A bibliometric study.

Medicine (Baltimore). 2023-6-30

[3]
The model of descriptive, diagnostic, predictive, and prescriptive analytics on 100 top-cited articles of nasopharyngeal carcinoma from 2013 to 2022: Bibliometric analysis.

Medicine (Baltimore). 2023-2-10

[4]
Analyzing author collaborations by developing a follower-leader clustering algorithm and identifying top co-authoring countries: Cluster analysis.

Medicine (Baltimore). 2023-7-21

[5]
A comprehensive approach for clustering analysis using follower-leading clustering algorithm (FLCA): Bibliometric analysis.

Medicine (Baltimore). 2023-10-20

[6]
Gut microbiota and eye diseases: a bibliometric study and visualization analysis.

Front Cell Infect Microbiol. 2023

[7]
Evolutionary patterns and research frontiers of artificial intelligence in age-related macular degeneration: a bibliometric analysis.

Quant Imaging Med Surg. 2025-1-2

[8]
Macular disease research in the United Kingdom 2011-2014: a bibliometric analysis of outputs, performance and coverage.

BMC Res Notes. 2015-12-30

[9]
Exploring the top-cited literature in telerehabilitation for joint replacement using the descriptive, diagnostic, predictive, and prescriptive analytics model: A thematic and bibliometric analysis.

Medicine (Baltimore). 2023-12-1

[10]
From theory to therapy: a bibliometric and visual study of stem cell advancements in age-related macular degeneration.

Cytotherapy. 2024-6

引用本文的文献

[1]
Real-world insights of patient voices with age-related macular degeneration in the Republic of Korea and Taiwan: an AI-based Digital Listening study by Semantic-Natural Language Processing.

BMC Med Inform Decis Mak. 2025-3-18

本文引用的文献

[1]
Visualizing burst spots on research for four authors in MDPI journals named to be Citation Laureates 2021 using temporal bar graph.

Medicine (Baltimore). 2023-8-11

[2]
Analyzing author collaborations by developing a follower-leader clustering algorithm and identifying top co-authoring countries: Cluster analysis.

Medicine (Baltimore). 2023-7-21

[3]
Visual impact beam plots: Analyzing research profiles and bibliometric metrics using the following-leading clustering algorithm (FLCA).

Medicine (Baltimore). 2023-7-14

[4]
Analyzing fulminant myocarditis research trends and characteristics using the follower-leading clustering algorithm (FLCA): A bibliometric study.

Medicine (Baltimore). 2023-6-30

[5]
Integrating genetics and metabolomics from multi-ethnic and multi-fluid data reveals putative mechanisms for age-related macular degeneration.

Cell Rep Med. 2023-7-18

[6]
Classification and citation analysis of the 100 top-cited articles on nurse resilience using chord diagrams: A bibliometric analysis.

Medicine (Baltimore). 2023-3-17

[7]
Analysis of citation trends to identify articles on delirium worth reading using DDPP model with temporal heatmaps (THM): A bibliometric analysis.

Medicine (Baltimore). 2023-2-22

[8]
The model of descriptive, diagnostic, predictive, and prescriptive analytics on 100 top-cited articles of nasopharyngeal carcinoma from 2013 to 2022: Bibliometric analysis.

Medicine (Baltimore). 2023-2-10

[9]
Visual Analysis of International Environmental Security Management Research (1997-2021) Based on VOSviewer and CiteSpace.

Int J Environ Res Public Health. 2023-1-31

[10]
Using temporal heatmaps to identify worthwhile articles on immune checkpoint blockade for melanoma (ICBM) in Mainland China, Hong Kong, and Taiwan since 2000: A bibliometric analysis.

Medicine (Baltimore). 2023-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索